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Abstract
In the lazy regime, training deep neural networks reduces to kernel regression, and the spectrum of
the neural tangent kernel (NTK) controls convergence and stability. To reduce parameters, one can
use low-rank structure and random features: deep networks with low-rank bottlenecks (RF-LR) freeze
random feature maps and train only narrow readouts of dimension 𝑟 ≪ 𝑁 per layer. We study how
depth 𝐿 and bottleneck rank 𝑟 shape this kernel: we take the sequential infinite-width limit 𝑁 → ∞,
then analyze how the remaining randomness concentrates as 𝑟 → ∞.
We derive an explicit new NTK recursion for RF-LR with a visible 1/𝑟 factor at each bottleneck layer
and a closed-form expansion at any depth. For the deterministic mean (proxy) kernel we prove sharp
depth scaling—correlations align to 1 at rate 𝑂 (𝑘−2) (same as for MLPs at the edge of chaos), the
kernel magnitude saturates, and the diagonal–off-diagonal gap decays as ≍ 1/(𝑟𝑘)—and we give
condition-number bounds: 𝜅 ≥ Ω(𝑟 · 𝐿) in general, and 𝜅⊥ = 1 or 𝜅⊥ = 1 + 𝑜(1) for equicorrelated
or high-dimensional spherical data (full proof in the appendix). Under a fixed parameter budget
𝑂 (𝑁𝐿𝑟), depth and rank trade off, and from a conditioning perspective they commute. A main
message is that low rank does not shrink the kernel function class: for the three-layer network, the
mean RF-LR kernel induces the same RKHS as the shallow ReLU kernel, so expressivity is preserved
while trainable parameters drop from 𝑂 (𝐿𝑁2) to 𝑂 (𝐿𝑟𝑁). We prove a rigorous proxy–empirical
bound for equicorrelated data (Appendix C.4); for general (non-equicorrelated) data the concentration
is sketched and left open. We also link the 𝐼 (𝑟) ∼ 1/

√
𝑟 scaling to 1/

√
𝑟 sub-Gaussian concentration

of the empirical kernel around the proxy. Numerical experiments (Appendix E) confirm the depth
scaling, conditioning bounds, and proxy–empirical concentration. All condition-number statements
refer to the proxy kernel; we see strong experimental agreement with our theory and proxy predictions,
and exact RKHS equivalence holds for three layers, with extension to depth 𝐿 ≥ 4 left to future work.
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1 Introduction

In the lazy/NTK regime, training deep neural networks linearizes and reduces to kernel regression with an (approximately)
fixed Gram matrix [4]. To reduce parameters, one can factorize weights as𝑊 = 𝐿𝑅⊤ with 𝑟 ≪ min{𝑛, 𝑚}; a central
question is whether such factorizations preserve favorable optimization and convergence [1]. We combine this with
the random-feature lazy regime: we freeze the feature (left) directions and train only the readout (right) factors into a
bottleneck of dimension 𝑟 per layer. That combination defines the RF-LR architecture studied in this paper: RF-LR
freezes random feature directions and trains only linear readouts (and biases) into a bottleneck of dimension 𝑟 ≪ 𝑁
at each layer. This paper asks: how do depth 𝐿 and bottleneck dimension 𝑟 control conditioning-relevant scales for
optimization under the NTK perspective? We adopt the standard NTK setup (ReLU activation, isotropic Gaussian
initialization, sequential infinite-width limit) and analyze the induced kernel at initialization.
The architecture stacks high-then-low width layers with a bottleneck 𝑟 ≪ 𝑛1; we train readouts and biases while keeping
feature directions frozen. In the kernel regime, the Gram matrix spectrum controls optimization rates [4, 11]. We
characterize limiting kernels and spectra under a composition-of-GPs view in the sequential infinite-width limit. Figure 1
illustrates the layout.
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Figure 1: RF-LR: low-rank bottleneck (red dashed) reduces width from 𝑛1 to 𝑟; readouts trained, feature directions
frozen.

1.1 Related work

The NTK framework [4] characterizes infinitely wide networks as kernel methods. Extensions cover finite-width
corrections [20, 6], depth scaling [22, 9], and RMT limits for Gram spectra in the extensive-width regime (𝑛 ∼ 𝑁2,
layers in the RMT limit) [23]. Low-rank architectures reduce parameters and change optimization dynamics [29, 30, 31];
freezing features isolates 𝑟 as the key control parameter. LoRA theory situates low-rank fine-tuning between kernel and
feature-learning regimes [?, ?]. For ReLU kernels, Bietti and Bach [17] established the “deep equals shallow” RKHS
phenomenon via endpoint expansions; we combine Fisher–Kibble decoupling [15, 16] with a Puiseux analysis near
𝜌 = 1.
Depth analyses for fully trained MLPs at the edge of chaos [?, ?] show that increasing depth drives correlations toward
1, so layerwise kernels become nearly constant and the deep mean kernel approaches a rank-one structure. The same
qualitative picture holds in RF-LR; the mean-kernel infinite-depth limit collapses after centering unless one rescales
time or learning rate (Appendix D.9). Freezing the random features removes some cross-layer dependencies present
in fully trained networks; together with Fisher–Kibble decoupling, this yields explicit formulas and suggests a path
toward joint large-𝑛 regimes via the RMT extensive-width framework [23]. The recursion (Theorem 3.1) also suggests
organizing finite-width corrections as an expansion in the bottleneck dimension 𝑟 . Natural connections for future work
include tensor programs [54] and depth-dependent NTK spectral analyses for MLPs at the edge of chaos [?], while
retaining explicit control of the bottleneck scaling.
In the lazy/NTK regime, gradient flow reduces to kernel regression with an (approximately) fixed kernel [4]. Our
contributions are:

• Explicit NTK recursion and closed form. We derive the infinite-width NTK recursion for RF-LR with an
explicit 1/𝑟 factor at each bottleneck layer and a closed-form 𝐿-layer expansion (Theorem 3.1, Corollary 3.1).
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• Depth scaling and condition number. For the deterministic proxy kernel we prove sharp depth scaling:
correlation alignment 1 − 𝜌𝑘 = Θ(𝑘−2) (the same as for full-width MLPs at the edge of chaos [?, ?]),
kernel saturation to a fixed point, and diagonal–off-diagonal gap ≍ 1/(𝑟𝑘) (Theorem 4.1). We prove a
condition-number lower bound 𝜅 ≥ Ω(𝑟 · 𝐿) for the proxy Gram in general (Proposition 4.1), and exact
conditioning 𝜅⊥ = 1 or 𝜅⊥ = 1 + 𝑜(1) for equicorrelated or high-dimensional spherical data (Corollary 4.1).
Under a fixed parameter budget 𝑂 (𝑁𝐿𝑟), depth and rank thus trade off from a conditioning perspective.

• RKHS equivalence (three layers). We show that the mean three-layer RF-LR kernel induces the same
RKHS as the shallow ReLU kernel (Corollary 5.2): the bottleneck does not shrink the kernel-regime function
class, while reducing trainable parameters from 𝑂 (𝐿𝑁2) to 𝑂 (𝐿𝑟𝑁) per layer. The proof uses Fisher–Kibble
decoupling and a Puiseux expansion at the endpoint; extension to 𝐿 ≥ 4 remains open.

• Numerical experiments. Appendix E presents deterministic and finite-width experiments that confirm
the depth scaling (Theorem 4.1), equicorrelated and high-dimensional conditioning (Corollary 4.1), and
proxy–empirical concentration (Theorem 4.2); non-equicorrelated data illustrate the 𝜅 ≥ Ω(𝑟 · 𝐿) lower bound
(Proposition 4.1).

All condition-number bounds refer to the proxy Gram matrix; we give a rigorous proxy–empirical bound on 1⊥ for
equicorrelated data (Theorem 4.2). Proof sketch: Appendix B.9.
We study the RF-LR NTK in the sequential infinite-width limit and its deterministic proxy; we do not analyze feature
learning, adaptive optimizers, or continual learning. Regime: fix 𝑛, take 𝑁 → ∞, then study concentration as 𝑟 → ∞;
we do not pursue 𝑛 → ∞ bulk spectral laws here. Sections 2–5 define the architecture, derive the recursion, state
depth–rank scaling, and give the RKHS identification.

2 Network definition and EOC parameterization

2.1 RF-LR architecture

Let h(0) (𝑥) = 𝑥 ∈ Rd0 . For ℓ = 1, . . . , 𝐿,

h(ℓ ) (𝑥) = 1
√
nℓ

nℓ∑︁
𝑗=1

𝐴
(ℓ )
𝑗

σ
(
𝑤

(ℓ )⊤
𝑗

h(ℓ−1) (𝑥)
)
+ 𝑐 (ℓ ) . (1)

Training policy: The readouts 𝐴(ℓ ) and layer biases 𝑐 (ℓ ) ∈ Rdℓ are trained; the feature directions 𝑤 (ℓ ) are frozen
random draws (i.i.d. Gaussian). The 1/√nℓ scaling (NTK parameterization) ensures a well-defined infinite-width limit.

Width vs bottleneck dimension. We distinguish the feature width nℓ (number of random features) from the output
dimension dℓ = dim(h(ℓ ) ). The trainable matrix 𝐴(ℓ ) ∈ Rdℓ×nℓ has columns 𝐴(ℓ )

𝑗
∈ Rdℓ . A bottleneck layer

corresponds to dℓ = 𝑟 ≪ nℓ , yielding 𝑂 (𝑟nℓ) trainable parameters and rank(𝐴(ℓ ) ) ≤ 𝑟 automatically.

Training parameters, biases, and initialization. Initialization is

𝑤
(ℓ )
𝑗

∼ N
(
0, 𝐼dℓ−1/dℓ−1

)
, 𝐴

(ℓ )
𝑖 𝑗

∼ N(0, 2), 𝑐 (ℓ ) = 0.

We use the edge-of-chaos (EOC) scaling for the weights so that Cov
(
𝑤

(ℓ )
𝑗

)
= 𝐼dℓ−1/dℓ−1 [48]. In our bottleneck regime

we take dℓ−1 = 𝑟 for ℓ ≥ 2, so 𝑤 (ℓ )
𝑗

∈ R𝑟 with covariance 𝐼𝑟/𝑟 .

We include a layer bias 𝑐 (ℓ ) for completeness, but we avoid introducing extra scaling parameters for it. Bias scaling
can be absorbed into the learning rate; the infinite-width and NTK structures remain qualitatively identical, and the
kernel-regime predictions depend on kernel geometry, not absolute scales.
With this setup in place, we record the standing assumptions and conventions used throughout the paper.

2.2 Assumptions

We take the sequential infinite-width limit (𝑛1 → ∞, . . . , 𝑛𝐿 → ∞) with i.i.d. Gaussian random features frozen after
initialization under NTK scaling 1/√𝑛ℓ [4]; for ℓ ≥ 2 we assume the bottleneck regime dℓ = 𝑟 ≪ 𝑛ℓ with edge-of-chaos
scaling Cov(𝑤 (ℓ )

𝑗
) = 𝐼𝑟/𝑟. For RKHS and concentration we use normalized inputs (typically 𝑥 ∈ S𝑑−1) so kernels are
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zonal in the cosine similarity 𝜌, and we assume positive 1-homogeneity of the activation (satisfied by σ), which is used
for Fisher–Kibble decoupling (Lemma 5.1) and radial/angular separation in the three-layer kernel. Full statements and
discussion are in Appendix B (standing assumptions, EOC scaling, and Assumption B.1).

2.3 Parameterization, signal propagation, and kernels

We briefly record the scaling conventions used in the kernel calculations; details are in Appendix B.3 and Appendix B.5.1.
EOC scaling: we choose the variance 𝜎𝐴 so that the forward variance remains stable across depth (edge of chaos),
leading to a recursion for the layerwise variance 𝑞 (ℓ ) and a corresponding condition on 𝜎𝐴. Bottleneck scaling and the
1/𝑟 factor: in the bottleneck regime dℓ−1 = 𝑟 for ℓ ≥ 2, the EOC scaling uses Cov(𝑤) = 𝐼𝑟/𝑟, which keeps base and
derivative kernels 𝑂 (1), and the RF-LR NTK recursion carries an explicit prefactor 1/𝑟 at bottleneck layers. With an
abuse of notation, we denote by Σ (ℓ ) the base kernel and by ¤Σ (ℓ ) the derivative kernel.

Definition 2.1 (Base and derivative kernels). In the sequential infinite-width limit, the layer-ℓ base kernel is

Σ (ℓ ) (𝑥, 𝑥′) = E𝑤
[
σ

(
𝑤⊤h(ℓ−1) (𝑥)

)
σ

(
𝑤⊤h(ℓ−1) (𝑥′)

) ]
, (2)

and the derivative kernel is

¤Σ (ℓ ) (𝑥, 𝑥′) = E𝑤
[
¤σ
(
𝑤⊤h(ℓ−1) (𝑥)

)
¤σ
(
𝑤⊤h(ℓ−1) (𝑥′)

)
∥𝑤∥2

]
. (3)

For ℓ = 1 and centered Gaussian 𝑤, Σ (1) is rotation-invariant with standard closed forms in terms of input cosine
similarity 𝜌 = ⟨𝑥, 𝑥′⟩/(∥𝑥∥∥𝑥′∥):

Σ (1) (𝑥, 𝑥′) = ∥𝑥∥∥𝑥′∥
2𝜋

(
(𝜋 − 𝜃) cos 𝜃 + sin 𝜃

)
, 𝜃 = arccos(𝜌).

We emphasize that these are not the NNGP kernel and the classical derivative kernel appearing in the NTK
formulation. Rather, they are the base kernel and the derivative kernel of the Gaussian process h(ℓ ) conditional on
h(ℓ−1) . By rotation invariance of Gaussian weights, these kernels depend on inputs only through the cosine similarity
𝜌 = ⟨𝑥, 𝑥′⟩/(∥𝑥∥ ∥𝑥′∥). We will therefore write Σ (ℓ ) (𝜌) and ¤Σ (ℓ ) (𝜌). When no confusion arises (e.g., for ℓ = 1), we
will also abuse notation and write 𝜎(𝜌) for the scalar kernel function; this 𝜎 denotes the kernel-as-a-function-of-𝜌, not
the activation σ. We can now state the base and derivative kernels precisely.
Given these definitions, we can now state the following composition result.

Theorem 2.1 (Gaussian process composition). In the sequential infinite-width limit, the hidden states h(ℓ ) form a
composition of Gaussian processes:

• Conditionally onh(ℓ−1) , for any finite collection of inputs {𝑥1, . . . , 𝑥𝑚}, the vector (h(ℓ ) (𝑥1), . . . ,h(ℓ ) (𝑥𝑚))
converges in distribution to a multivariate Gaussian.

• The conditional limiting Gaussian has mean zero and covariance matrix [Σ (ℓ ) (𝑥𝑖 , 𝑥 𝑗 )]𝑚𝑖, 𝑗=1, where Σ (ℓ ) is
the base kernel defined in Definition 2.1 and depends on h(ℓ−1) .

Proof. See Appendix B.5.2. □

3 NTK recursion

We now state the main result characterizing the NTK recursion for RF-LR. This recursion governs how the kernel
evolves through layers and determines the training dynamics in the infinite-width limit.
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Theorem 3.1 (Infinite-width NTK recursion). Under NTK parameterization 1/√nℓ and a sequential limit n1 →
∞, . . . ,n𝐿 → ∞ with w (ℓ ) ∼ N(0, Idℓ−1/dℓ−1) i.i.d. frozen after initialization, the layer-ℓ NTK satisfies

𝚯(0) (𝑥, 𝑥′) = 0, (4)
𝚯(1) (𝑥, 𝑥′) = 1 + Σ (1) (𝑥, 𝑥′), (5)

𝚯(ℓ ) (𝑥, 𝑥′) = 1 + 1
𝑟
𝚯(ℓ−1) (𝑥, 𝑥′) · ¤Σ (ℓ ) (𝑥, 𝑥′) + 1

𝑟
Σ (ℓ ) (𝑥, 𝑥′), ℓ ≥ 2, (6)

where the factor 1/𝑟 appears for bottleneck layers ℓ ≥ 2 (low-rank regime). For ℓ = 1, Σ (1) is deterministic; for
ℓ > 1, Σ (ℓ ) and ¤Σ (ℓ ) are random fields whose fluctuations shrink with the rank 𝑟 of bottlenecks. The additive constant
1 term comes from the trained layer biases 𝑐 (ℓ ) and corresponds to the constant mode. For mean-zero targets (or
after centering labels), the relevant spectrum is that of the kernel restricted to 1⊥, so 𝜅⊥ is the quantity governing
convergence; the constant mode then plays no role.

Furthermore, for a finite-width network initialized at random parameters 𝜃0, the empirical NTK 𝚯(𝐿)
𝜃0

is a random
kernel (a Gram operator of gradients). Consequently the kernel gradient flow trajectory 𝑡 ↦→ 𝑓𝑡 is also a random
object (measurable with respect to 𝜃0) and satisfies

𝑑

𝑑𝑡
𝑓𝑡 (𝑥) = −

∫
𝚯(𝐿)
𝜃0

(𝑥, 𝑥′)
(
𝑓𝑡 (𝑥′) − 𝑦(𝑥′)

)
𝑑𝜇(𝑥′),

where 𝜇 is the data distribution and 𝑦 is the target function. In the sequential infinite-width NTK limit, 𝚯(𝐿)
𝜃0

concentrates and converges (in probability) to the deterministic kernel 𝚯(𝐿) , yielding the corresponding deterministic
limiting gradient flow.

Proof: See Appendix B.5.1, Proof B.5.1.

We can now derive an explicit closed-form expression for the NTK at any depth by expanding the recursion.

Corollary 3.1 (General L-layer NTK; closed form). Under the assumptions of Theorem 3.1, for any 𝐿 ≥ 1, the NTK
admits the explicit form:

𝚯(𝐿) (𝑥, 𝑥′) =
𝐿∑︁
ℓ=1

1
𝑟𝐿−ℓ

(
𝐿∏

𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′)
)
+

𝐿∑︁
ℓ=1

1
𝑟max(1,𝐿−ℓ ) Σ

(ℓ ) (𝑥, 𝑥′)
𝐿∏

𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′), (7)

where the first sum has bias contributions (empty product = 1 when ℓ = 𝐿) and the second has fresh-basis
contributions; each bottleneck layer contributes a factor 1/𝑟. For 𝐿 = 2: 𝚯(2) = 1 + 1

𝑟

( ¤Σ (2) + Σ (1) ¤Σ (2) + Σ (2) ):
the leading 1 is the bias (constant mode); 1

𝑟
¤Σ (2) is the bias-path term (derivative at layer 2 only); 1

𝑟
Σ (1) ¤Σ (2) and

1
𝑟
Σ (2) are the fresh-basis terms (layers 1 and 2). This matches Theorem 3.1 by substituting 𝚯(1) = 1 + Σ (1) into the

recursion for ℓ = 2.

Proof. Expanding the recursion in Theorem 3.1 yields the two sums in (7). A complete proof by induction (including
an explicit 𝐿 = 3 expansion) is given in Appendix B.5.4; see also Appendix B.1. □

Finite-width corrections and comparison with the full-width MLP NTK at EOC are given in Appendix B.4 and
Appendix B.6 (Proposition B.1).

3.1 Large-depth regime: probabilistic kernel and exponential decay

The mean (probabilistic) recursion and the resulting nested conditional expectations are essential for understanding
the deep (𝐿 → ∞) behavior, but the full discussion is lengthy. We therefore defer the probabilistic recursion, its
nested-expectation form, and the exponential depth-suppression bound to Appendix B.7 (see also Appendix C.3 for
related open problems).
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The three-layer case admits a compact representation that makes the Fisher–Kibble structure explicit; we present it in
Section 5.1.

4 Depth scaling of the RF-LR NTK

4.1 Main results

Random correlations and deterministic proxy. At each layer ℓ ≥ 2, the correlation 𝜌ℓ =

cos ∠(h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′)) is a random variable: given the population correlation from the previous layer, Fisher’s
law and Lemma C.2 give E[(𝜌ℓ − 𝜚(𝜌ℓ−1))2] ≤ 𝐶/𝑟 and P( |𝜌ℓ − 𝜚(𝜌ℓ−1) | ≥ 𝑡) ≤ 6 exp(−𝑐 𝑟 𝑡2), so fluctuations are
𝑂 (1/

√
𝑟) sub-Gaussian. The NTK recursion passes through this chain of random correlations. The deterministic

proxy replaces 𝜌ℓ by the deterministic iterates 𝜌𝑘 = 𝜚◦(𝑘−1) (𝜌1) and analyzes the scalar recursion (84); for large 𝑟 the
random kernel concentrates around the proxy (Appendix B.7); a formal bound ∥𝐾̂ − 𝐾proxy∥op = 𝑜𝑃 (1) as 𝑟 → ∞ and
its implication for empirical conditioning are given in Appendix C.4. In the equicorrelated case, a full proof yields
∥(𝐾̂ − 𝐾proxy) |1⊥ ∥op = 𝑂𝑃 (𝐿/𝑟 + 1/

√
𝑟) (Theorem 4.2). All condition-number statements in this section refer to the

proxy Gram matrix; we give a lower bound on its condition number and, in one special case, exact conditioning with
high probability.

Depth–rank scaling. The recursion contains an explicit 1/𝑟 bottleneck factor, which leads to saturation of the kernel
magnitude as depth grows, while the diagonal–off-diagonal gap decays with depth in the proxy recursion (the same
1 − 𝜌𝑘 = Θ(𝑘−2) correlation alignment as for full-width MLPs at the edge of chaos [?, ?]). Theorem 4.1 analyzes this
deterministic proxy, which approximates the mean path of the random recursion for large 𝑟 . We refer to Appendix D.4
for notation and kernel expansions.

Theorem 4.1 (Depth scaling for the deterministic proxy RF-LR NTK). Fix 𝑟 > 1 and 𝜌1 ∈ (−1, 1). Let Θ(𝑘 ) (𝜌1)
be the deterministic proxy defined by (84), with 𝜌𝑘 = 𝜚◦(𝑘−1) (𝜌1) deterministic. Then (as for MLPs at EOC [?, ?]):

• (Correlation alignment) The correlation recursion aligns polynomially:

1 − 𝜌𝑘 = Θ(𝑘−2).

• (Kernel saturation) Θ(𝑘 ) (𝜌1) → Θ★(𝑟) as 𝑘 → ∞, where Θ★(𝑟) is the fixed point of the limiting recursion
obtained by setting ¤𝑠 = 𝑠 = 1/2, namely

Θ★(𝑟) =
2𝑟 + 1
2𝑟 − 1

.

Moreover,
Θ(𝑘 ) (𝜌1) − Θ★(𝑟) = 𝑂 (𝑘−1).

• (Depth-induced gap decay) Let Θ(𝑘 )
diag := Θ(𝑘 ) (1) (on-diagonal value, i.e. identical inputs) and Θ

(𝑘 )
off :=

Θ(𝑘 ) (𝜌1) (off-diagonal value for an input pair with initial cosine similarity 𝜌1). Then

Θ
(𝑘 )
diag − Θ

(𝑘 )
off = Θ

( 1
𝑟 𝑘

)
,

for large 𝑘 .

Proof. See Appendix D.7. □

Proposition 4.1 (Lower bound on condition number for the proxy). In the setting of Theorem 4.1, consider the
deterministic proxy kernel Θ(𝐿) (𝜌) and form the 𝑛 × 𝑛 Gram matrix M with entries 𝑀𝑖 𝑗 = Θ(𝐿) (𝜌𝑖 𝑗 ) for pairwise
input cosine similarities 𝜌𝑖 𝑗 = ⟨𝑥𝑖 , 𝑥 𝑗⟩/(∥𝑥𝑖 ∥∥𝑥 𝑗 ∥) ∈ (−1, 1). Let 𝜆max and 𝜆min denote the maximum and minimum
eigenvalues of M restricted to 1⊥. Assume: (i) 𝑛 ≥ 3; (ii) there exists a pair (𝑖, 𝑗) with 𝜌𝑖 𝑗 bounded away from 1;
(iii) the dataset is not equicorrelated (the 𝜌𝑖 𝑗 for 𝑖 ≠ 𝑗 are not all equal). Then 𝜆max = Θ(1), 𝜆min ≤ 𝑂 (1/(𝑟𝐿)), and
the condition number 𝜅 = 𝜆max/𝜆min satisfies 𝜅 ≥ Ω(𝑟 · 𝐿). When assumption (iii) is violated (equicorrelated data),
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the proposition does not apply; instead Corollary 4.1 gives the best-case 𝜅⊥ = 1 (and similarly for approximately
equicorrelated high-dimensional data).

Proof. See Appendix D.5. □

Theorem 4.2 (Operator norm on 1⊥ in the equicorrelated case). Fix 𝑛, 𝐿 ≥ 1, 𝑟 ≥ 2, and the equicorrelated setup
𝜌1,𝑖𝑖 = 1, 𝜌1,𝑖 𝑗 = 𝜌0 for 𝑖 ≠ 𝑗 with 𝜌0 ∈ (−1, 1). Let 𝐾̂ be the 𝑛 × 𝑛 empirical RF-LR NTK Gram matrix and 𝐾proxy
the deterministic proxy with entries (𝐾proxy)𝑖 𝑗 = Θ(𝐿) (𝜌1,𝑖 𝑗 ) (Definition D.4). Then there exist constants 𝐶, 𝑐 > 0
(depending on 𝐿, 𝜌0) such that for any 𝜖 > 0,

P
(

(𝐾̂ − 𝐾proxy

) ��
1⊥




op ≥ 𝜖

)
≤ 𝐶 exp

(
−𝑐 𝑟 𝜖

2

𝐿2

)
+ 𝐶 exp

(
−𝑐 𝑟 𝜖

𝐿

)
.

In particular,


(𝐾̂ − 𝐾proxy

) ��
1⊥




op = 𝑂𝑃 (𝐿/𝑟 + 1/

√
𝑟) as 𝑟 → ∞ with 𝑛, 𝐿 fixed. Hence if 𝑟 = 𝑂 (𝐿2), then

(𝐾̂ − 𝐾proxy

) ��
1⊥




op = 𝑂𝑃 (𝐿/𝑟).

Proof. See Appendix C.4. □

Corollary 4.1 (Exact conditioning for equicorrelated and high-dimensional random data). In the setting of
Proposition 4.1, let 𝜅⊥ = 𝜆max (M|1⊥ )/𝜆min (M|1⊥ ) denote the condition number on the mean-zero subspace. The
following hold.

• Equicorrelated data. If 𝜌𝑖 𝑗 = 𝜌0 for all 𝑖 ≠ 𝑗 (and 𝜌𝑖𝑖 = 1), then on 1⊥ all 𝑛 − 1 eigenvalues of M equal
𝜆⊥ = Θ(𝐿) (1) − Θ(𝐿) (𝜌0) = Θ(1/(𝑟𝐿)). Hence

𝜅⊥ =
𝜆max
𝜆min

=
𝜆⊥
𝜆⊥

= 1.

• High-dimensional random data. If the inputs 𝑥1, . . . , 𝑥𝑛 ∈ S𝑑−1 are drawn i.i.d. uniformly from the unit
sphere, then as 𝑑 → ∞ (with 𝑛, 𝑟, 𝐿 fixed) with high probability max𝑖≠ 𝑗 |𝜌𝑖 𝑗 | = 𝑂 (1/

√
𝑑), so the proxy

Gram matrix is approximately equicorrelated with 𝜌0 = 𝑂 (1/
√
𝑑). On that event, all eigenvalues on 1⊥

are 𝜆⊥ = Θ(𝐿) (1) −Θ(𝐿) ( 𝜌̄) + 𝑜(1) = Θ(1/(𝑟𝐿)) (1 + 𝑜(1)) with 𝜌̄ = 𝑂 (1/
√
𝑑), and they differ from each

other by 𝑜(𝜆⊥). Hence
𝜅⊥ =

𝜆max
𝜆min

= 1 + 𝑜(1) as 𝑑 → ∞.

On that high-probability event, the empirical Gram matrix 𝐾̂ concentrates around the proxy: ∥(𝐾̂ −
𝐾proxy) |1⊥ ∥op = 𝑂𝑃 (𝐿/𝑟 + 1/

√
𝑟) (Theorem 4.2 with 𝜌0 = 𝑂 (1/

√
𝑑)).

Proof. See Appendix D.6. □

Limited scope of exact conditioning. Equicorrelated and high-dimensional i.i.d. spherical data are special; the
general conditioning guarantee in this section is the proxy lower bound (Proposition 4.1). Summary of condition-number
scaling:

• Equicorrelated: 𝜅⊥ = 1 (exact; all eigenvalues on 1⊥ equal 𝜆⊥ = Θ(1/(𝑟𝐿))).
• High-dim i.i.d. spherical: 𝜅⊥ = 1 + 𝑜(1) as 𝑑 → ∞ (approximately equicorrelated).
• General (non-equicorrelated): 𝜅 ≥ Ω(𝑟 · 𝐿); explicit: 𝜆max = Θ(1), 𝜆min ≤ 𝑂 (1/(𝑟𝐿)), hence 𝜅 =

𝜆max/𝜆min ≥ Ω(𝑟 · 𝐿).

Proxy vs. optimization. Proposition 4.1 gives a lower bound on the condition number of the proxy Gram matrix;
we see strong experimental agreement with our theory and proxy predictions, and exact RKHS equivalence holds for
three layers, with extension to depth 𝐿 ≥ 4 left to future work. For the proxy and non-equicorrelated data, depth drives
the kernel toward near-constant entries (gap Θ(1/(𝑟𝐿)), as for MLPs at EOC) and 𝜅 ≥ Ω(𝑟𝐿). The actual network
uses random correlations with 𝑂 (1/

√
𝑟) sub-Gaussian fluctuations (Appendix B.7), so for large 𝑟 the random kernel
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concentrates around the proxy. The condition number is relevant for kernel regression (stability and convergence
speed depend on 𝜆max/𝜆min); under a fixed parameter budget 𝑂 (𝑁𝐿𝑟), depth and rank trade off from a conditioning
perspective, and the choice of 𝑟 and 𝐿 is a matter of approximation power (effective depth and RKHS expressivity).

5 Low rank is enough for the NTK RKHS (three-layer mean kernel)

We show that low rank does not shrink the kernel-regime function class: the mean three-layer RF-LR kernel induces the
same RKHS as the shallow ReLU kernel.

Roadmap. We first derive the Fisher–Kibble decoupling (Section 5.1), which separates angular (correlation) and
radial (norm) randomness and yields a compact three-layer empirical NTK form. We then obtain a Puiseux expansion of
the mean kernel near 𝜌 = 1 (Section 5.2), which controls the RKHS. The leading exponent matches the shallow ReLU
kernel, so the RKHSs coincide (Corollary 5.2). The analysis is restricted to three layers because the Fisher–Kibble
integral admits a closed form for a single bottleneck; for 𝐿 ≥ 4 (depth at least four layers), the nested Fisher-chain
expectations require a Laplace-type expansion that remains open (Appendix C.3).

5.1 Microscopic distributions: Fisher–Kibble decoupling

We can now state a compact representation under a homogeneity assumption.

Lemma 5.1 (Fisher–Kibble decoupling). Let 𝑥, 𝑦 be input vectors and let 𝑥1, 𝑦1 denote their rank-𝑟 random
projections. Define the empirical correlation 𝜌1 = cos ∠(𝑥1, 𝑦1) and squared norms 𝑢 = ∥𝑥1∥2, 𝑣 = ∥𝑦1∥2. Then:

• 𝜌1 follows Fisher’s correlation distribution [15, 16] (centered at 𝜌). For 𝑟 > 2:

𝑝Fisher (𝜌1) =
(𝑟 − 2) Γ(𝑟 − 1) (1 − 𝜌2) 𝑟−1

2 (1 − 𝜌2
1)

𝑟−4
2

√
2𝜋 Γ(𝑟 − 1

2 ) (1 − 𝜌𝜌1)𝑟−
3
2

2𝐹1

(
1
2
,

1
2

; 𝑟 − 1
2

;
1 + 𝜌𝜌1

2

)
.

• (𝑢, 𝑣) follow Kibble’s [49] bivariate chi-square law (𝑢, 𝑣 ≥ 0; 𝐼𝜈 is the modified Bessel function):

𝑝Kibble (𝑢, 𝑣) =

(𝑢𝑣) 𝑟
4 −

1
2 exp

(
− 𝑢+𝑣

2(1−𝜌2 )

)
Γ(𝑟/2) (2(1 − 𝜌2)) 𝑟

2 +1 𝜌
𝑟
4 −

1
2
𝐼 𝑟

2 −1

(
𝜌
√
𝑢𝑣

1 − 𝜌2

)
.

• Angular and radial parts are independent: 𝑝(𝜌1, 𝑢, 𝑣) = 𝑝Fisher (𝜌1) 𝑝Kibble (𝑢, 𝑣).

Proof: See Appendix C.2, Proof C.2.

Homogeneity assumption enabling decoupling. By positive 1-homogeneity and rotational invariance, the base
kernel factorizes and (𝜌1, ∥𝑥1∥, ∥𝑦1∥) decouple into angular (Fisher) and radial (Kibble) components; see Appendix C.1
and Appendix C.2 for details, explicit densities, and the induced compact three-layer empirical NTK form.

Compact three-layer empirical NTK form. Under the assumptions of Theorem 3.1 with 𝐿 = 2, the three-layer
empirical RF-LR NTK admits the representation

𝚯(2) (𝑥, 𝑥′) = 1 + 1
𝑟
𝚯(1) (𝑥, 𝑥′) ¤Σ (2) (𝑥, 𝑥′) + 1

𝑟
Σ (2) (𝑥, 𝑥′), 𝚯(1) (𝑥, 𝑥′) = 1 + Σ (1) (𝑥, 𝑥′), (8)

and, under the positive 1-homogeneity assumption (satisfied by σ), the layer-2 fields can be written in terms of the
Fisher angular variable 𝜌1 and the Kibble radial factor 𝑤𝑟 :=

√
𝑢𝑣/𝑟 as

¤Σ (2) (𝑥, 𝑥′) = 1 − arccos(𝜌1)
𝜋

, Σ (2) (𝑥, 𝑥′) = 𝑤𝑟 Σ
(1) (𝜌1). (9)

Combining (8)–(9) yields an explicit three-layer kernel in the decoupled microscopic variables (𝜌1, 𝑢, 𝑣); equivalently,

𝚯(2) (𝑥, 𝑥′) = 1 + 1
𝑟
𝚯(1) (𝑥, 𝑥′)

(
1 − arccos(𝜌1)

𝜋

)
+ 1
𝑟
𝑤𝑟 Σ

(1) (𝜌1). (10)

See Remark C.1 (Appendix C.2) for the full derivation, the explicit Fisher and Kibble densities, and the induced compact
form (10).

10



5.2 Endpoint expansion via hypergeometric analysis

The RKHS of zonal kernels on the sphere is controlled by the Puiseux behavior near 𝜌 = ±1 [17]. For the mean
three-layer kernel, the key step is to analyze the Fisher expectation E[arccos( 𝜌̂𝑟 )] as 𝜌 → 1.

Proposition 5.1 (Puiseux expansion of E(arccos( 𝜌̂𝑟 )) near 𝜌 = 1). Let 𝑟 > 2 and 𝜌̂𝑟 ∼ Fisher(𝜌, 𝑟). Write 𝜌 = 1− 𝑡
with 𝑡 ↓ 0. Then

E[arccos( 𝜌̂𝑟 )] =
√

2𝑡 𝐼 (𝑟) + 𝑂 (𝑡3/2),
where 𝐼 (𝑟) ∈ (0,∞) admits the closed form

𝐼 (𝑟) =
(𝑟 − 2) 2 𝑟− 5

2
√

2𝜋

Γ

(
𝑟−1

2

)
Γ
(
𝑟
2 − 1

)
Γ(𝑟 − 1) 𝐶1 (𝑟), 𝐶1 (𝑟) =

Γ

(
𝑟 − 1

2

)
Γ

(
𝑟 − 3

2

)
Γ(𝑟 − 1)2 . (11)

Proof. Insert Fisher’s density (Appendix C.1) into
∫ 1
−1 arccos(𝑠) 𝑝Fisher (𝑠 | 1 − 𝑡, 𝑟) 𝑑𝑠 and change variables 𝑠 = 1 − 𝑣.

Near 𝑡, 𝑣 → 0, use arccos(1−𝑣) =
√

2𝑣+𝑂 (𝑣3/2) and apply the hypergeometric connection formula (DLMF §15.8.2 [51])
to replace 2𝐹1 ( 1

2 ,
1
2 ; 𝑟 − 1

2 ; 1 − 𝑡+𝑣
2 ) by the constant 𝐶1 (𝑟) up to 𝑂 ((𝑡 + 𝑣)𝑟−3/2). Then the leading integral reduces, after

𝑤 = 𝑣/𝑡, to a Beta integral and yields (11). See Appendix C.7 for the full proof. □

Proposition 5.2 (𝐼 (𝑟) decays as 1/
√
𝑟). Let 𝐼 (𝑟) be defined by (11). Then 𝐼 (𝑟) = 𝑂 (1/

√
𝑟) as 𝑟 → ∞.

Proof sketch. Apply Stirling’s formula to the Gamma ratios in (11). A detailed proof is given in Proposition C.2
(Appendix C.9). □

Corollary 5.1 (Puiseux expansion of the mean three-layer NTK near 𝜌 = 1). Let 𝚯̃(2) (𝜌) denote the mean three-layer
RF-LR NTK and let 𝐾∞ (𝜌) denote the deterministic 𝑟 → ∞ limit kernel,

𝐾∞ (𝜌) = Θ(1) (𝜌)
(
1 − arccos(𝜌)

𝜋

)
+ Σ (1) (𝜌) + 1,

as in Appendix C.7. Writing 𝜌 = 1 − 𝑡 with 𝑡 ↓ 0, one has

𝚯̃
(2) (1 − 𝑡) = 1 + 1

𝑟

(
𝐾∞ (1) − 1

)
− 1
𝑟

[
2
𝜋
+
√

2
2𝜋

𝐼 (𝑟)
]
𝑡1/2 + 𝑂 (𝑡3/2), (12)

where 𝐼 (𝑟) is as in Proposition 5.1. In particular, since 𝐼 (𝑟) = 𝑂 (1/
√
𝑟) (Proposition 5.2), the bracket equals

2/𝜋 +𝑂 (1/
√
𝑟), so the 𝑡1/2 coefficient is 2

𝜋𝑟
+𝑂 (𝑟−3/2).

Proof sketch. Combine the three-layer mean-kernel identity (Appendix C.7) with Proposition 5.1 and the ReLU endpoint
expansion arccos(1 − 𝑡) =

√
2𝑡 +𝑂 (𝑡3/2). A complete proof is given in Appendix C.7. □

Interpretation: 1/𝑟 vs. 𝐼 (𝑟). The 1/𝑟 prefactor in (12) comes from the EOC initialization and the RF-LR recursion:
each bottleneck layer contributes 1/𝑟 (Section 2, Appendix B.3). With unnormalized classical NTK (no bottleneck
scaling), the Puiseux coefficient would be

[ 2
𝜋
+

√
2

2𝜋 𝐼 (𝑟)
]

and the 𝐼 (𝑟) ∼ 1/
√
𝑟 term would directly reflect the Fisher–

Kibble randomness. Thus the 1/𝑟 decay in the expansion is due to EOC; 𝐼 (𝑟) ∼ 1/
√
𝑟 is the signature of the

randomness-induced deviation from the deterministic limit.

5.3 RKHS equivalence via endpoint behavior

Main results. For zonal kernels on the sphere, the RKHS is determined by the Puiseux exponents at the endpoints
𝜌 = ±1 [17]. Our main results in this section are:

• Puiseux expansion: The mean three-layer NTK 𝚯̃
(2) (𝜌) has a leading 𝑡1/2 term near 𝜌 = 1− 𝑡 (Corollary 5.1).

The coefficient involves E[arccos( 𝜌̂𝑟 )], whose expansion uses the hypergeometric connection formula (DLMF
§15.8.2 [51]) applied to the 2𝐹1 in Fisher’s density (Proposition 5.1).
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• 𝐼 (𝑟) scaling: 𝐼 (𝑟) = 𝑂 (1/
√
𝑟) as 𝑟 → ∞ (Proposition 5.2), so the 𝑡1/2 coefficient is an 𝑂 (1) perturbation of

the shallow ReLU constant.
• RKHS equivalence: The three-layer mean kernel induces the same RKHS as the shallow ReLU kernel

(Corollary 5.2 below), by the Bietti–Bach criterion [17, Theorem 1]: matching the exponent 1/2 at 𝜌 = 1
suffices.

See Appendix C.7 for the full proof of the Puiseux expansion and RKHS identification.

Corollary 5.2 (Low rank is enough for the NTK RKHS: three-layer mean kernel). Under the RF-LR setting with
ReLU nonlinearity and isotropic random features on S𝑑−1, the three-layer mean NTK 𝚯̃

(2) induces the same RKHS
as the shallow ReLU kernel. In particular, the corresponding RKHSs coincide as sets with equivalent norms.

Proof sketch. The mean three-layer kernel is zonal. Proposition 5.1 gives a Puiseux expansion near 𝜌 = 1 with leading
exponent 𝑡1/2; Proposition 5.2 shows the 𝑟-dependent coefficient is an𝑂 (1) perturbation of the shallow ReLU coefficient.
Since the shallow ReLU kernel has the same endpoint exponent 1/2, the Bietti–Bach criterion [17] yields RKHS
equivalence. See Appendix C.7 for a detailed argument. □

6 Conclusion and discussion

We gave an NTK analysis for low-rank random-feature architectures (RF-LR) under explicit assumptions, yielding a new
explicit recursion, sharp depth scaling for the proxy kernel, condition-number bounds, and in the three-layer case RKHS
equivalence with the shallow ReLU kernel and concentration in the bottleneck dimension. In the lazy/NTK regime with
mean-zero targets, stability and convergence depend on the condition number 𝜆max/𝜆min of the centered Gram matrix.
Our results give a lower bound on the proxy condition number and in one setting its exact value w.h.p. Numerical
experiments (Appendix E) confirm the depth scaling, conditioning bounds, and proxy–empirical concentration. Exact
RKHS equivalence holds for three layers, with extension to depth 𝐿 ≥ 4 left to future work; the link to GD convergence
or sample complexity is also left to future work.
The empirical three-layer NTK concentrates around its deterministic limit with sub-Gaussian tails in 𝑟 (Corollary C.2,
Appendix C.6). The 𝐼 (𝑟) = 𝑂 (1/

√
𝑟) scaling (Proposition C.2) matches Fisher–Kibble corrections as the mean kernel’s

leading endpoint coefficient vanishes in 𝑟. Extending RKHS equivalence to depth 𝐿 ≥ 4 would require controlling
endpoint expansions through the full Fisher chain (Appendix C.7). Conditioning holds for arbitrary 𝐿, whereas RKHS
equivalence is proved only for three layers (Appendix C.8). Natural next steps are concentration bounds for general
depth 𝐿, bulk spectral laws in the RMT limit 𝑛 ∼ 𝑁2 by adapting [23] to low-rank depth 𝐿 ≥ 2, and the impact of data
geometry (hypercube vs. spherical).
On the experimental side, confirming lazy-kernel predictions and testing 𝑂 (1/𝑛) + 𝑂 (1/𝑟) finite-width corrections
would strengthen the link between the asymptotic theory and practice. Our scope is the lazy/NTK regime, where
tractability is greatest.
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A Summary of main results

This work develops an NTK analysis for low-rank random-feature architectures (RF-LR) under explicit assumptions.
Appendix E reports numerical illustrations that accompany the theory.
Main: depth/rank scaling and condition number. The trainable parameter budget scales as 𝑂 (𝑁𝐿𝑟). In the
deterministic proxy mean recursion, depth drives correlations toward 1 with 1 − 𝜌𝑘 = Θ(𝑘−2) (the same correlation
alignment as for full-width MLPs at the edge of chaos [?, ?]), the kernel magnitude saturates, and the diagonal–off-
diagonal gap decays as ≍ 1/(𝑟𝑘) (Theorem 4.1). We prove a lower bound on the condition number of the proxy
Gram matrix, 𝜅 ≥ Ω(𝑟 · 𝐿) (Proposition 4.1), and exact conditioning 𝜅⊥ = 1 or 𝜅⊥ = 1 + 𝑜(1) for equicorrelated
or high-dimensional random data (Corollary 4.1). Under a fixed budget 𝑂 (𝑁𝐿𝑟), depth and rank trade off from a
conditioning perspective; the choice of 𝑟 and 𝐿 is a matter of approximation power (e.g. effective depth and RKHS
expressivity).
Recursion. We provide an explicit NTK recursion for arbitrary depth in RF-LR and a closed-form expansion
(Theorem 3.1, Corollary 3.1).
Low rank is enough for the NTK RKHS (three layers). In the NTK regime, the three-layer RF-LR mean kernel
induces the same RKHS as the shallow ReLU kernel (Corollary 5.2), showing that the bottleneck does not reduce the
kernel-regime function class while lowering the trainable parameter scaling from dense 𝑂 (𝐿𝑁2) to 𝑂 (𝐿𝑟𝑁).
Concentration in the bottleneck dimension. For the three-layer case, the empirical kernel concentrates around its
deterministic limit 𝐾∞ (𝜌) with tails controlled by the bottleneck dimension 𝑟 (Theorem C.1, Corollary C.2). For
equicorrelated data, a full proof in the appendix gives ∥(𝐾̂ − 𝐾proxy) |1⊥ ∥op = 𝑂𝑃 (𝐿/𝑟 + 1/

√
𝑟) (Theorem 4.2), linking

proxy and empirical conditioning on the mean-zero subspace.
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B Notation and standing assumptions

B.1 Standing assumptions (expanded)

We summarize the conventions used throughout the main text.

• Sequential infinite width. Widths n1, . . . ,n𝐿 tend to infinity sequentially under NTK scaling 1/√nℓ .
Random features 𝑤 (ℓ ) are i.i.d. Gaussian and frozen after initialization.

• Training policy. Only the readouts 𝐴(ℓ ) (and layer biases 𝑐 (ℓ ) ) are trained; all other parameters are frozen.
• Bottleneck regime. For ℓ ≥ 2, the representation dimension is dℓ = 𝑟 ≪ nℓ . This induces an explicit 1/𝑟

factor in the RF-LR NTK recursion at bottleneck layers.
• Zonal kernels. By rotational invariance of Gaussian features, base and derivative kernels depend on inputs

only through the cosine similarity 𝜌 = ⟨𝑥, 𝑥′⟩/(∥𝑥∥ ∥𝑥′∥). For RKHS results we typically take 𝑥 ∈ S𝑑−1.
• Homogeneity. We use Assumption B.1 (positive 1-homogeneity) for Fisher–Kibble decoupling and for

separating radial and angular components in three-layer calculations.

B.2 Finite-width empirical NTK and limiting gradient flow

For a finite-width network initialized at random parameters 𝜃0, the empirical NTK Θ
(𝐿)
𝜃0

is a random kernel (the Gram
operator of gradients ⟨∇𝜃 𝑓 (𝑥; 𝜃0),∇𝜃 𝑓 (𝑥′; 𝜃0)⟩). The kernel gradient flow trajectory 𝑡 ↦→ 𝑓𝑡 is therefore a random
object (measurable with respect to 𝜃0) and satisfies

𝑑

𝑑𝑡
𝑓𝑡 (𝑥) = −

∫
Θ

(𝐿)
𝜃0

(𝑥, 𝑥′)
(
𝑓𝑡 (𝑥′) − 𝑦(𝑥′)

)
𝑑𝜇(𝑥′),

where 𝜇 is the data distribution and 𝑦 is the target function. In the sequential infinite-width NTK limit, Θ(𝐿)
𝜃0

concentrates
and converges in probability to the deterministic kernel Θ(𝐿) , yielding the corresponding deterministic limiting gradient
flow driven by Θ(𝐿) [4].

Assumption B.1 (Homogeneous activation). The activation function 𝜎 is positively 1-homogeneous:

𝜎(𝛼𝑢) = 𝛼 𝜎(𝑢) for all 𝛼 ≥ 0, 𝑢 ∈ R.

In particular, σ satisfies this property. This assumption is used for Fisher–Kibble decoupling (Lemma 5.1) and for
separating radial and angular fluctuations in the three-layer kernel.

B.3 EOC scaling and the origin of 1/𝑟

Let Σ𝑤 = Cov(𝑤 (ℓ )
𝑗

). Writing 𝑞 (ℓ ) = E∥ℎ (ℓ ) (𝑥)∥2 for a fixed unit-norm input, weight independence yields the variance
recursion

𝑞 (ℓ ) =
𝜎2
𝐴

2
𝑞 (ℓ−1) Tr(Σ𝑤),

The edge-of-chaos (EOC) condition chooses 𝜎𝐴 so that the linearized coefficient equals 1,

𝜎2
𝐴

2
Tr(Σ𝑤) = 1,

preventing exploding/vanishing signal propagation across depth. In particular, under Σ𝑤 = 𝐼dℓ−1/dℓ−1 one has
Tr(Σ𝑤) = 1 and 𝜎𝐴 =

√
2.

In the bottleneck regime dℓ−1 = 𝑟 for ℓ ≥ 2, EOC prescribes Σ𝑤 = 𝐼𝑟/𝑟 . For ReLU, the (normalized) derivative kernel
has the closed form

¤̄Σ (ℓ ) (𝜌) = P(𝑍 > 0, 𝑍 ′ > 0) = 1
2
− arccos(𝜌)

2𝜋
∈

[
0,

1
2

]
,

so ¤Σ (ℓ ) (𝑥, 𝑥′) = ¤̄Σ (ℓ ) (𝜌ℓ) remains 𝑂 (1) under EOC and is uniformly bounded by 1/2. The RF-LR NTK recursion
(Theorem 3.1) carries an explicit prefactor 1/𝑟 at bottleneck layers because gradients propagate through an 𝑟-dimensional
bottleneck and the corresponding Jacobian metric concentrates on an 𝑟-dimensional subspace; see Appendix B.5.1 for
the detailed derivation.
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B.4 Finite-width effects

Beyond the infinite-width limit, one can in principle study finite-width corrections to the kernel via cumulant/resolvent
expansions or diagrammatic methods; see [6] for a Feynman-diagram approach in wide-network asymptotics. These
corrections are deferred to future work.

B.5 Proofs of NTK Recursions

B.5.1 Proof of Theorem 3.1: Infinite-width NTK recursion

Proof sketch. Decompose the NTK at layer ℓ into (i) a bias contribution (constant +1), (ii) Term 2: gradient inner
products for the layer-ℓ readouts 𝐴(ℓ ) , and (iii) Term 1: backpropagated NTK from previous layers times the Jacobian
metric. Apply the Law of Large Numbers conditionally on h(ℓ−1) as 𝑛ℓ → ∞; the sequential limit ensures lower layers
have already converged.

Proof. We prove the recursion by decomposing the NTK at layer ℓ into contributions of the trainable parameters up to
layer ℓ, and invoking the Law of Large Numbers (LLN) under the sequential infinite-width limit. Let 𝑓 (ℓ ) denote the
network output truncated at layer ℓ. For finite width, the (random) NTK reads

Θ
(ℓ )
rand (𝑥, 𝑥

′) =
(
∇𝜃 (ℓ−1) 𝑓

(ℓ ) (𝑥)
)⊤ (

∇𝜃 (ℓ−1) 𝑓
(ℓ ) (𝑥′)

)︸                                        ︷︷                                        ︸
Term 1

+
𝑛ℓ∑︁
𝑗=1

𝜕 𝑓 (ℓ ) (𝑥)
𝜕𝐴

(ℓ )
𝑗

𝜕 𝑓 (ℓ ) (𝑥′)
𝜕𝐴

(ℓ )
𝑗︸                         ︷︷                         ︸

Term 2

. (13)

Bias parameters. We include a trainable layer bias 𝑐 (ℓ ) (initialized at zero). The gradient feature with respect to 𝑐 (ℓ )
is constant, so it contributes an additive constant term to the NTK; under our normalization this contribution is 1. This
yields the additive +1 term in the recursion.

Term 2 (layer-ℓ output weights 𝐴(ℓ ) ). By the forward pass, 𝜕 𝑓 (ℓ ) (𝑥)/𝜕𝐴(ℓ )
𝑗

=
𝜎𝐴√
𝑛ℓ

σ
(
w (ℓ )⊤
𝑗

h(ℓ−1) (𝑥)
)
. Therefore

Term 2 =
𝜎2
𝐴

𝑛ℓ

𝑛ℓ∑︁
𝑗=1

σ
(
w (ℓ )⊤
𝑗

h(ℓ−1) (𝑥)
)
σ

(
w (ℓ )⊤
𝑗

h(ℓ−1) (𝑥′)
)
. (14)

Conditionally on h(ℓ−1) , the summands are i.i.d. over w (ℓ )
𝑗

. As 𝑛ℓ → ∞ (with lower layers already taken to their
limits), LLN yields

Term 2
𝑝
−→ 𝜎2

𝐴 Σ
(ℓ ) (𝑥, 𝑥′). (15)

Term 1 (previous layers). By the chain rule,

∇𝜃 (ℓ−1) 𝑓
(ℓ ) (𝑥) =

( 𝜕 𝑓 (ℓ ) (𝑥)
𝜕h(ℓ−1) (𝑥)

)
∇𝜃 (ℓ−1)h(ℓ−1) (𝑥). (16)

Hence Term 1 factorizes as Θ(ℓ−1)
rand (𝑥, 𝑥′) multiplied by a Jacobian metric:

Term 1 = Θ
(ℓ−1)
rand (𝑥, 𝑥′) ·

〈 𝜕 𝑓 (ℓ )

𝜕h(ℓ−1) (𝑥),
𝜕 𝑓 (ℓ )

𝜕h(ℓ−1) (𝑥
′)
〉
. (17)

Taking the inner product and applying LLN as 𝑛ℓ → ∞ yields〈 𝜕 𝑓 (ℓ )

𝜕h(ℓ−1) (𝑥),
𝜕 𝑓 (ℓ )

𝜕h(ℓ−1) (𝑥
′)
〉
𝑝
−→ 𝜎2

𝐴
¤Σ (ℓ ) (𝑥, 𝑥′). (18)

Therefore,
Term 1

𝑝
−→ Θ(ℓ−1) (𝑥, 𝑥′) · 𝜎2

𝐴
¤Σ (ℓ ) (𝑥, 𝑥′). (19)

Combining the bias contribution with the two limits completes the recursion. For bottleneck layers ℓ ≥ 2, the Jacobian
and output contributions scale with 1/𝑟 (from the 𝑟-dimensional bottleneck); we absorb 𝜎2

𝐴
into the normalization. Thus

Θ(1) (𝑥, 𝑥′) = 1 + Σ (1) (𝑥, 𝑥′), (20)

Θ(ℓ ) (𝑥, 𝑥′) = 1 + 1
𝑟
Θ(ℓ−1) (𝑥, 𝑥′) · 𝜎2

𝐴
¤Σ (ℓ ) (𝑥, 𝑥′) + 1

𝑟
𝜎2
𝐴 Σ

(ℓ ) (𝑥, 𝑥′) (ℓ ≥ 2). (21)

The sequential limit assumption ensures that lower-layer random objects have already converged when taking the
next-layer limit, justifying the conditional LLN applications. □
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B.5.2 Proof of Theorem 2.1: Gaussian process composition

Proof sketch. By induction on ℓ: for ℓ = 0 the output is deterministic; for ℓ ≥ 1, conditionally on h(ℓ−1) the forward
pass is a sum of i.i.d. terms over 𝑗 , so the multivariate CLT yields Gaussian convergence. The covariance matches the
base kernel Σ (ℓ ) by definition.

Proof. We prove by induction on ℓ that h(ℓ ) converges to a Gaussian process with covariance kernel Σ (ℓ ) .

Base case ℓ = 0. For ℓ = 0, we have h(0) (𝑥) = 𝑥, which is deterministic and trivially a Gaussian process.

Inductive step. Assume that h(ℓ−1) converges to a Gaussian process with covariance kernel Σ (ℓ−1) . Consider the
forward pass at layer ℓ:

h(ℓ ) (𝑥) = 1
√
nℓ

nℓ∑︁
𝑗=1

𝐴
(ℓ )
𝑗

σ
(
𝑤

(ℓ )⊤
𝑗

h(ℓ−1) (𝑥)
)
+ 𝑐 (ℓ ) . (22)

For any finite collection of inputs {𝑥1, . . . , 𝑥𝑚}, conditionally on h(ℓ−1) , the terms 𝐴(ℓ )
𝑗

σ
(
𝑤

(ℓ )⊤
𝑗

h(ℓ−1) (𝑥𝑖)
)

are
independent across 𝑗 and identically distributed. Since 𝐴(ℓ )

𝑗
∼ N(0, 𝜎2

𝐴
) and 𝑤 (ℓ )

𝑗
are frozen Gaussian draws, the

conditional distribution of each term is centered with finite variance (and 𝑐 (ℓ ) is deterministic at initialization).
By the multivariate Central Limit Theorem, as nℓ → ∞, the vector (h(ℓ ) (𝑥1), . . . ,h(ℓ ) (𝑥𝑚)) converges in distribution
to a multivariate Gaussian. The covariance is given by

E
[
h(ℓ ) (𝑥𝑖) h(ℓ ) (𝑥 𝑗 )

]
= E𝑤

[
σ

(
𝑤⊤h(ℓ−1) (𝑥𝑖)

)
σ

(
𝑤⊤h(ℓ−1) (𝑥 𝑗 )

) ]
= Σ (ℓ ) (𝑥𝑖 , 𝑥 𝑗 ), (23)

where the expectation is taken over the frozen weights 𝑤 and the limiting Gaussian process h(ℓ−1) . The last equality
follows from the definition of the base kernel in Definition 2.1.
The sequential infinite-width limit ensures that h(ℓ−1) has already converged to its Gaussian process limit when taking
the limit for layer ℓ, justifying the application of the CLT conditionally on h(ℓ−1) . □

B.5.3 Proof of three-layer NTK Corollary

Proof sketch. Apply the recursion (Theorem 3.1) for ℓ = 1 and ℓ = 2; for ℓ = 1 use 𝚯(0) = 0; for ℓ = 2 substitute
𝚯(1) = 1 + Σ (1) . Under homogeneity, the mean form involves expectations over Fisher (angular) and Kibble (radial); as
𝑟 → ∞ these concentrate, recovering 𝐾∞.

Proof. Apply Theorem 3.1 for ℓ = 1 and ℓ = 2. For ℓ = 1, since 𝚯(0) = 0, the recursion gives:

𝚯(1) (𝑥, 𝑥′) = 1 +𝚯(0) (𝑥, 𝑥′) · ¤Σ (1) (𝑥, 𝑥′) + Σ (1) (𝑥, 𝑥′) = 1 + Σ (1) (𝑥, 𝑥′). (24)

For ℓ = 2, substitute 𝚯(1) = 1 + Σ (1) into the recursion:

𝚯(2) (𝑥, 𝑥′) = 1 + 1
𝑟
𝚯(1) (𝑥, 𝑥′) · ¤Σ (2) (𝑥, 𝑥′) + 1

𝑟
Σ (2) (𝑥, 𝑥′). (25)

This is the stated three-layer recursion with the bias contribution.

Mean explicit form (low-rank). Under the homogeneous ReLU setting on the sphere, the mean three-layer NTK
(with 1/𝑟 factors) is

𝚯̃
(2) (𝜌) = 1 + 1

𝑟
𝚯(1) (𝜌) E

[
1 − arccos( 𝜌̂𝑟 )

𝜋

]
+ 1
𝑟
E
[
Σ (1) ( 𝜌̂𝑟 ) ∥𝑥1∥∥𝑦1∥

]
, (26)

where the expectations are over Fisher and Kibble. As 𝑟 → ∞, 𝜌̂𝑟 → 𝜌 and ∥𝑥1∥∥𝑦1∥/𝑟 → 1, so the limit
𝐾∞ (𝜌) = Θ(1) (𝜌) (1 − arccos(𝜌)/𝜋) + Σ (1) (𝜌) + 1 is recovered (without the 1/𝑟 prefactors, since the low-rank scaling
is absorbed in the limit). □

B.5.4 Proof of General 𝐿-layer NTK Corollary
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Remark B.1 (Explicit 2𝐿-term unrolling). Equivalently, expanding the recursion yields an explicit linear number of
terms (namely 2𝐿). For example, for 𝐿 = 3:

𝚯(3) (𝑥, 𝑥′) = 1 + 1
𝑟
¤Σ (2) · ¤Σ (3) + 1

𝑟
¤Σ (3)

+ 1
𝑟2 Σ

(1) · ¤Σ (2) · ¤Σ (3) + 1
𝑟
Σ (2) · ¤Σ (3) + 1

𝑟
Σ (3) . (27)

Each bottleneck layer contributes a factor 1/𝑟; layer 1 has no such factor. In total, there are 2𝐿 terms for depth 𝐿.

Proof sketch. By induction on 𝐿: for 𝐿 = 1 the recursion gives 𝚯(1) = 1 + Σ (1) . For 𝐿 ≥ 2, expand 𝚯(𝐿) via the
recursion into a bias term and two paths (derivative-propagated and fresh-base); each path contributes 𝐿 terms with the
appropriate 1/𝑟 factors, yielding 2𝐿 terms in total.

Proof. We prove the explicit form by induction on 𝐿, accounting for the +1 bias terms in the recursion.

Base case 𝐿 = 1. From Theorem 3.1, 𝚯(1) = 1 + Σ (1) . The formula with 𝐿 = 1 gives:

𝚯(1) (𝑥, 𝑥′) =
1∑︁
ℓ=1

( 1∏
𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′)
)
+

1∑︁
ℓ=1

Σ (ℓ ) (𝑥, 𝑥′)
1∏

𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′). (28)

For the first sum: when ℓ = 1,
∏1
𝑘=2

¤Σ (𝑘 ) = 1 (empty product). For the second sum: when ℓ = 1, Σ (1) · ∏1
𝑘=2

¤Σ (𝑘 ) =

Σ (1) · 1 = Σ (1) . Therefore, 𝚯(1) = 1 + Σ (1) , which matches the recursion.

Inductive step. Assume the formula holds for depth 𝐿 − 1:

𝚯(𝐿−1) (𝑥, 𝑥′) =
𝐿−1∑︁
ℓ=1

(
𝐿−1∏
𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′)
)
+
𝐿−1∑︁
ℓ=1

Σ (ℓ ) (𝑥, 𝑥′)
𝐿−1∏
𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′). (29)

By Theorem 3.1, for 𝐿 ≥ 2,

𝚯(𝐿) (𝑥, 𝑥′) = 1 + 1
𝑟
𝚯(𝐿−1) (𝑥, 𝑥′) · ¤Σ (𝐿) (𝑥, 𝑥′) + 1

𝑟
Σ (𝐿) (𝑥, 𝑥′). (30)

Substituting the inductive hypothesis and distributing the 1/𝑟 factor yields the stated closed form; the first sum gains a
new term 1 (from ℓ = 𝐿) and each existing term is multiplied by (1/𝑟) ¤Σ (𝐿) , while the second sum gains (1/𝑟)Σ (𝐿) and
each existing term is multiplied by (1/𝑟) ¤Σ (𝐿) . The first term 1 corresponds to ℓ = 𝐿 in the first sum (with empty product∏𝐿
𝑘=𝐿+1

¤Σ (𝑘 ) = 1). The last term Σ (𝐿) corresponds to ℓ = 𝐿 in the second sum (with empty product
∏𝐿
𝑘=𝐿+1

¤Σ (𝑘 ) = 1).
Therefore:

𝚯(𝐿) (𝑥, 𝑥′) =
𝐿∑︁
ℓ=1

(
𝐿∏

𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′)
)
+

𝐿∑︁
ℓ=1

Σ (ℓ ) (𝑥, 𝑥′)
𝐿∏

𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′), (31)

completing the induction. The total number of terms is 𝐿 + 𝐿 = 2𝐿, which grows linearly with depth. □

B.5.5 Reference: full-width MLP limiting NTK at the edge of chaos
Proposition B.1 (Closed form for full-width MLP EOC NTK). Let 𝑙 ≥ 1 and consider an infinitely wide 𝑙-layer
MLP with (𝑎, 𝑏)-ReLU activation initialized at the edge of chaos as in [?]. Denote by 𝜚 the corresponding cosine
map and by 𝜌1 (𝑥, 𝑥′) the input cosine similarity. Then the limiting NTK satisfies

𝐾∞ (𝑥, 𝑥′) = ∥𝑥∥ ∥𝑥′∥
(
𝑙∑︁
𝑘=1

𝜚◦(𝑘−1)(𝜌1 (𝑥, 𝑥′)
) 𝑙−1∏
𝑘′=𝑘

𝜚′
(
𝜚◦(𝑘

′−1)(𝜌1 (𝑥, 𝑥′)
) ))

𝐼𝑚𝑙
,

with the convention that the empty product (for 𝑘 = 𝑙) equals 1. See [?] for the derivation.
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B.6 Comparison with the classical fully-trained NTK recursion

For comparison, consider a standard fully-connected MLP where all weights (and biases) are trained under NTK
parameterization. In the sequential infinite-width limit, the classical NTK recursion takes the form [4]

Θ
(0)
MLP (𝑥, 𝑥

′) = 0, Θ
(ℓ )
MLP (𝑥, 𝑥

′) = Θ
(ℓ−1)
MLP (𝑥, 𝑥′) ¤𝐾 (ℓ ) (𝑥, 𝑥′) + 𝐾 (ℓ ) (𝑥, 𝑥′), ℓ ≥ 1, (32)

where 𝐾 (ℓ ) is the (deterministic) NNGP kernel at layer ℓ and ¤𝐾 (ℓ ) the associated derivative kernel (both obtained from
the signal-propagation recursion). Unrolling (32) yields one contribution per layer (a sum of 𝐿 terms, each propagated
through subsequent ¤𝐾 (𝑘 ) factors).
In contrast, the RF-LR recursion of Theorem 3.1 (i) carries explicit 1/𝑟 prefactors at bottleneck layers, and (ii) uses
conditional base/derivative kernels Σ (ℓ ) , ¤Σ (ℓ ) rather than the classical NNGP kernels 𝐾 (ℓ ) , ¤𝐾 (ℓ ) . These differences lead
to the 2𝐿-term expansion in Corollary 3.1, reflecting separate bias-path and fresh-basis contributions, each propagated
through subsequent derivative kernels and weighted by bottleneck factors.

Relation to fully trained MLPs at the edge of chaos. For fully trained (full-width) MLPs at the edge of chaos, the
limiting NTK admits a single-layer sum structure (one contribution per layer) without RF-LR bottleneck prefactors; see
Proposition B.1 for a reference closed form [?]. In contrast, the RF-LR expansion (7) contains 2𝐿 terms because the
recursion has both bias-path and fresh-basis-path contributions, each propagated through subsequent derivative kernels
and weighted by explicit 1/𝑟 factors at bottlenecks.

B.7 Probabilistic recursion, GP concatenation, and bottleneck scaling

Random correlation chain and Fisher’s law. At each layer ℓ ≥ 2, the pair (h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′)) is a 2𝑟-dimensional
Gaussian conditional on lower-layer randomness. The layer-ℓ sample correlation

𝜌ℓ = cos ∠
(
h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′)

)
=

⟨h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′)⟩
∥h(ℓ−1) (𝑥)∥ ∥h(ℓ−1) (𝑥′)∥

is a random variable. Given the population correlation 𝜌 = 𝜚(𝜌ℓ−1) (the conditional mean under the ReLU cosine
map), Fisher’s law [15, 16] and Lemma C.2 give E[(𝜌ℓ − 𝜌)2] ≤ 𝐶/𝑟 and P( |𝜌ℓ − 𝜌 | ≥ 𝑡) ≤ 6 exp(−𝑐 𝑟 𝑡2). Thus the
chain 𝜌1 → 𝜌2 → · · · → 𝜌𝐿 is a Markov chain of random variables with 𝑂 (1/

√
𝑟) fluctuations at each transition. The

NTK recursion passes through these random correlations successively: Σ (ℓ ) = Σ̄ (ℓ ) (𝜌ℓ), ¤Σ (ℓ ) = ¤̄Σ (ℓ ) (𝜌ℓ) with random
𝜌ℓ . The deterministic proxy (Definition D.4) replaces this random path by the deterministic iterates 𝜌𝑘 = 𝜚◦(𝑘−1) (𝜌1),
which represent the mean/infinite-𝑟 limit path.

Kernel randomness and GP concatenation. For ℓ > 1, Σ (ℓ ) and ¤Σ (ℓ ) are random fields because they depend on
h(ℓ−1) , which is the output of a (conditional) Gaussian process. By Theorem 2.1, the hidden states form a composition of
GPs: each layer’s output is conditionally Gaussian given the previous layer, but the unconditional law is a deep GP. In the
bottleneck regime, the pair (h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′)) is a 2𝑟-dimensional Gaussian conditional on lower-layer randomness,
with covariance determined by Σ (ℓ−1) . The base kernel Σ (ℓ ) and derivative kernel ¤Σ (ℓ ) are thus expectations over the
frozen features w (ℓ ) , conditional on this Gaussian pair, and inherit randomness through Σ (ℓ−1) .

Bottleneck scaling and explicit ReLU bounds. At a bottleneck layer ℓ ≥ 2, the RF-LR NTK recursion carries an
explicit prefactor 1/𝑟 (Theorem 3.1). For ReLU and isotropic weights with Cov(𝑤) = 𝐼𝑟/𝑟, one has

¤Σ (ℓ ) (𝑥, 𝑥′) = E𝑤
[
¤𝜎
(
𝑤⊤h(ℓ−1) (𝑥)

)
¤𝜎
(
𝑤⊤h(ℓ−1) (𝑥′)

)
∥𝑤∥2

]
= ¤̄Σ (ℓ ) (𝜌ℓ),

where 𝜌ℓ = cos ∠(h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′)) and ¤̄Σ (ℓ ) (𝜌) denotes the corresponding scalar derivative kernel evaluated
at cosine similarity 𝜌 ∈ [−1, 1]. Under the EOC normalization Tr(Cov(𝑤)) = 1, the ReLU derivative kernel has the
explicit form

¤̄Σ (ℓ ) (𝜌) = P(𝑍 > 0, 𝑍 ′ > 0) = 1
2
− arccos(𝜌)

2𝜋
∈

[
0,

1
2

]
,

where (𝑍, 𝑍 ′) is centered Gaussian with correlation 𝜌. In particular, sup𝜌∈[−1,1] ¤̄Σ (ℓ ) (𝜌) = 1/2, uniformly in ℓ.
Similarly, Σ (ℓ ) (𝑥, 𝑥′) = E𝑤 [𝜎(𝑤⊤h(ℓ−1) (𝑥)) 𝜎(𝑤⊤h(ℓ−1) (𝑥′))] is an 𝑂 (1) scalar kernel, and the 1/𝑟 factors enter
through the recursion.

20



Probabilistic recursion (nested expectations). The mean (probabilistic) NTK 𝚯̃
(𝐿)

= E[𝚯(𝐿) ] satisfies a recursion
involving expectations of products:

𝚯̃
(1)

= 1 + E
[
Σ (1) ] , 𝚯̃

(ℓ )
= 1 + 1

𝑟
E
[
𝚯(ℓ−1) · ¤Σ (ℓ ) ] + 1

𝑟
E
[
Σ (ℓ ) ] , ℓ ≥ 2. (33)

To emphasize the nested structure, write E≤ℓ−1 for expectation over all randomness up to depth ℓ−1, and E𝑤 (ℓ) [· | h(ℓ−1) ]
for expectation over the frozen feature direction 𝑤 (ℓ ) at layer ℓ, conditional on the previous hidden states. Then the
mean kernels are iterated conditional expectations:

E
[
Σ (ℓ ) (𝑥, 𝑥′)

]
= E≤ℓ−1

[
E𝑤 (ℓ)

[
𝜎(𝑤⊤h(ℓ−1) (𝑥)) 𝜎(𝑤⊤h(ℓ−1) (𝑥′))

�� h(ℓ−1) ] ] ,
E
[
𝚯(ℓ−1) (𝑥, 𝑥′) ¤Σ (ℓ ) (𝑥, 𝑥′)

]
= E≤ℓ−1

[
𝚯(ℓ−1) (𝑥, 𝑥′) · E𝑤 (ℓ)

[
¤𝜎(𝑤⊤h(ℓ−1) (𝑥)) ¤𝜎(𝑤⊤h(ℓ−1) (𝑥′)) ∥𝑤∥2 �� h(ℓ−1) ] ] .

Since 𝚯(ℓ−1) and Σ (ℓ ) , ¤Σ (ℓ ) share the randomness of h(ℓ−1) , one has E[𝚯(ℓ−1) · ¤Σ (ℓ ) ] ≠ 𝚯̃
(ℓ−1) · E[ ¤Σ (ℓ ) ] in general;

controlling this dependence (and the resulting nested conditional expectations) is the main technical point for a rigorous
deep mean-kernel theory.

Exponential depth suppression (ReLU, bottlenecks). Assume for simplicity that all layers ℓ ≥ 2 are bottlenecks
with the same rank 𝑟 . For ReLU under EOC we have the explicit uniform bound

¤̄Σ (ℓ ) (𝜌) ≤ 𝑐0 :=
1
2
, ∀𝜌 ∈ [−1, 1], ∀ℓ ≥ 2.

From the closed form (7), the contribution from layer ℓ to 𝚯(𝐿) is multiplied by
∏𝐿
𝑘=ℓ+1

¤Σ (𝑘 ) . Writing ¤Σ (𝑘 ) = ¤̄Σ (𝑘 ) (𝜌𝑘),
we obtain

1
𝑟𝐿−ℓ

𝐿∏
𝑘=ℓ+1

¤Σ (𝑘 ) ≤ 1
𝑟𝐿−ℓ

𝐿∏
𝑘=ℓ+1

¤̄Σ (𝑘 ) (𝜌𝑘) ≤
𝑐𝐿−ℓ0
𝑟𝐿−ℓ

.

Hence, contributions from early layers (ℓ ≪ 𝐿) decay exponentially in 𝐿 − ℓ when 𝑐0/𝑟 < 1, and the NTK becomes
increasingly localized to the top of the network as depth grows.

Proposition B.2 (Effective depth decomposition and a log 𝑟 window). Assume the uniform derivative-kernel bound
¤Σ (ℓ ) (𝑥, 𝑥′) ≤ 𝑐0 for all ℓ ≥ 2 and all input pairs (𝑥, 𝑥′), and assume that for a given (𝑥, 𝑥′) one has a uniform
base-kernel bound

|Σ (ℓ ) (𝑥, 𝑥′) | ≤ 𝐶Σ (𝑥, 𝑥′), ∀ℓ ∈ {1, . . . , 𝐿}.
Fix 𝐿 ≥ 2, 𝑟 > 𝑐0, and an integer 𝑚 ∈ {1, . . . , 𝐿}. Define the top-𝑚 truncation 𝚯(𝐿)

top,𝑚 (𝑥, 𝑥′) by restricting both
sums in the explicit expansion (7) to indices ℓ ∈ {𝐿 − 𝑚 + 1, . . . , 𝐿}. Then��𝚯(𝐿) (𝑥, 𝑥′) −𝚯(𝐿)

top,𝑚 (𝑥, 𝑥′)
�� ≤ 1 + 𝐶Σ (𝑥, 𝑥′)

1 − 𝑐0/𝑟

( 𝑐0
𝑟

)𝑚
.

In particular, taking 𝑚 = ⌈𝛼 log 𝑟⌉ (for any 𝛼 > 0) yields a log 𝑟 effective-depth window: the contribution of layers
ℓ ≤ 𝐿 − ⌈𝛼 log 𝑟⌉ is at most��𝚯(𝐿) (𝑥, 𝑥′) −𝚯(𝐿)

top,⌈𝛼 log 𝑟 ⌉ (𝑥, 𝑥
′)
�� ≤ 1 + 𝐶Σ (𝑥, 𝑥′)

1 − 𝑐0/𝑟

( 𝑐0
𝑟

) ⌈𝛼 log 𝑟 ⌉
= 𝑜(𝑟−𝑝)

for every fixed 𝑝 > 0 as 𝑟 → ∞.

Proof sketch. The remainder is the sum of terms in (7) with ℓ ≤ 𝐿 −𝑚; each such term carries a factor
∏𝐿
𝑘=ℓ+1

¤Σ (𝑘 ) ≤
𝑐𝐿−ℓ0 and hence (𝑐0/𝑟)𝐿−ℓ . Summing over ℓ ≤ 𝐿 − 𝑚 yields a geometric-series tail; substituting 𝑚 = ⌈𝛼 log 𝑟⌉ gives
the stated decay.

Proof. By definition of 𝚯(𝐿)
top,𝑚, the remainder is the sum of the terms in (7) with ℓ ≤ 𝐿 − 𝑚. For such ℓ, we have

𝐿 − ℓ ≥ 𝑚, and by the derivative-kernel bound ¤Σ (𝑘 ) (𝑥, 𝑥′) ≤ 𝑐0 we obtain

1
𝑟𝐿−ℓ

𝐿∏
𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′) ≤
( 𝑐0
𝑟

)𝐿−ℓ
.
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Moreover, for ℓ ≤ 𝐿 − 𝑚 ≤ 𝐿 − 1 the base-kernel term carries the same prefactor 𝑟−(𝐿−ℓ ) in (7), hence

1
𝑟𝐿−ℓ

��Σ (ℓ ) (𝑥, 𝑥′)
�� 𝐿∏
𝑘=ℓ+1

¤Σ (𝑘 ) (𝑥, 𝑥′) ≤ 𝐶Σ (𝑥, 𝑥′)
( 𝑐0
𝑟

)𝐿−ℓ
.

Summing these bounds over ℓ ≤ 𝐿 − 𝑚 and using a geometric-series tail gives��𝚯(𝐿) (𝑥, 𝑥′) −𝚯(𝐿)
top,𝑚 (𝑥, 𝑥′)

�� ≤
(
1 + 𝐶Σ (𝑥, 𝑥′)

) ∞∑︁
𝑗=𝑚

( 𝑐0
𝑟

) 𝑗
=

1 + 𝐶Σ (𝑥, 𝑥′)
1 − 𝑐0/𝑟

( 𝑐0
𝑟

)𝑚
,

as claimed. The log 𝑟 specialization follows by substituting 𝑚 = ⌈𝛼 log 𝑟⌉ and observing that (𝑐0/𝑟) ⌈𝛼 log 𝑟 ⌉ = 𝑜(𝑟−𝑝)
for every fixed 𝑝 > 0. □

B.8 Comparison table: depth/rank effects in the kernel regime

B.9 Techniques and proof sketch

We highlight the main proof ingredients and how they combine.

Recursion and closed form. The RF-LR NTK recursion (Theorem 3.1) follows from a layerwise decomposition of
the gradient inner product into bias, readout, and backpropagated contributions, together with conditional law of large
numbers arguments under the sequential infinite-width limit [4]. Iterating the recursion yields the explicit 2𝐿-term
expansion (Corollary 3.1).

Microscopic decoupling and concentration. For three layers, the empirical kernel depends on the sample cosine and
norm product of rank-𝑟 Gaussian projections. Rotational invariance yields Fisher–Kibble decoupling (Lemma 5.1),
separating angular and radial fluctuations [15, 16, 49]. Concentration of Gaussian norms and sample correlations then
yields sub-Gaussian deviations in 𝑟 for the empirical kernel (Theorem C.1 and Corollary C.2).

RKHS identification via endpoint expansions. The RKHS of zonal kernels on the sphere is controlled by the Puiseux
behavior near 𝜌 = ±1 [17]. We compute the mean three-layer kernel’s endpoint expansion by combining Fisher’s density
with a hypergeometric connection formula, showing that the leading 𝑡1/2 exponent is preserved after taking expectations,
hence the mean kernel induces the same RKHS as the shallow ReLU kernel (Corollary 5.2).

Depth scaling and effective depth. Depth dependence is controlled by correlation propagation and by products of
derivative kernels. In the bottleneck regime, the RF-LR recursion carries explicit 1/𝑟 prefactors at each bottleneck
layer, and for ReLU one has sup𝜌 ¤̄Σ (ℓ ) (𝜌) ≤ 1/2, which yields exponential suppression of early-layer contributions as
depth increases (Section 4). A refined mean-kernel statement is obtained by analyzing the deterministic proxy recursion
(Theorem 4.1).

Future work: quadratic random-matrix scaling. Establishing bulk spectral laws for the empirical RF-LR NTK in a
quadratic scaling regime 𝑛→ ∞ requires additional resolvent/local-law inputs. The Benigni–Paquette framework [23]
establishes RMT limits for Gram spectra in the extensive-width regime (𝑛 ∼ 𝑁2) with layers taken in the RMT limit, via
resolvent replacement and Gaussian-equivalence machinery for shallow two-layer NTKs. Adapting these methods to the
present low-rank random-feature structure and to depth 𝐿 ≥ 2 is left for future work.

C Proofs of low-rank NTK RKHS

C.1 Background and statements for Section 5

RKHS viewpoint in the NTK regime. In the NTK regime, training dynamics linearize:
𝑓𝑡 (𝑥) ≈ 𝑓0 (𝑥) + ⟨∇𝜃 𝑓0 (𝑥), 𝜃𝑡 − 𝜃0⟩.

The learned function stays in the RKHS induced by the (limiting) kernel Θ, with norm
∥ 𝑓 ∥2

HΘ
= ⟨ 𝑓 ,Θ−1 𝑓 ⟩𝐿2 .

For RF-LR with frozen random features, universal approximation holds due to full support of the frozen Gaussian draws
𝑤 (ℓ ) , so any function in the Barron space [50] can be approximated with error 𝑂 (1/

√
𝑁). Classical NTK analysis

suggests that feature weights move little during training; RF-LR enforces this by design by freezing the feature weights,
which isolates kernel-regime behavior without an additional weight-deviation analysis.
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Mean RKHS and random features. Each realization𝜔 of the random features yields a kernel 𝐾𝜔 (𝑥, 𝑥′) = Θ
(2)
𝜔 (𝑥, 𝑥′)

and an induced RKHS H𝜔 . The mean kernel 𝐾̃ (𝑥, 𝑥′) = E𝜔 [𝐾𝜔 (𝑥, 𝑥′)] is deterministic; its RKHS H𝐾̃ is the RKHS of
𝐾̃ . It is not E[H𝜔] (expectation of Hilbert spaces is undefined). For each 𝜔, the feature map 𝜑𝜔 (𝑥) = 𝐾𝜔 (·, 𝑥) ∈ H𝜔

is random, whereas the canonical feature map of the mean kernel 𝜑𝐾̃ (𝑥) = 𝐾̃ (·, 𝑥) ∈ H𝐾̃ is deterministic. The mean
RKHS describes the typical function space obtained after averaging over random feature realizations.

Remark (application of Bietti–Bach). Once the mean kernel’s Puiseux endpoint behavior is established (Ap-
pendix C.7), the RKHS equivalence in Corollary 5.2 follows directly from the characterization theorem of [17].

Corollary C.1 (Mean NTK over Fisher–Kibble has same RKHS: three-layer case). Under Assumption B.1 and
the RF-LR setting with ReLU nonlinearity and isotropic random features on S𝑑−1, the mean three-layer NTK 𝚯̃

(2)

(obtained by taking expectations over Fisher and Kibble distributions) is a zonal kernel that induces the same RKHS
as the shallow ReLU kernel. In particular, the RKHSs coincide as sets with equivalent norms.

Proof: See Appendix C.7.

Main RKHS result (stated in the main text). Corollary 5.2 is stated in Section 5. It follows by combining the
Puiseux endpoint analysis in Appendix C.7 with the RKHS characterization of [17].

C.2 Discussion on Fisher and Kibble Distributions
Lemma C.1 (Fisher–Kibble decoupling). Let 𝑥, 𝑦 be input vectors and let 𝑥1, 𝑦1 denote their rank-𝑟 random
projections. Define the empirical correlation 𝜌1 = cos ∠(𝑥1, 𝑦1) and squared norms 𝑢 = ∥𝑥1∥2, 𝑣 = ∥𝑦1∥2. Then:

• 𝜌1 follows Fisher’s correlation distribution [15] [16], centered at the true correlation 𝜌.

• (𝑢, 𝑣) follow Kibble’s [49] bivariate Gamma (chi-square) law.

• Angular and radial parts are independent: 𝑝(𝜌1, 𝑢, 𝑣) = 𝑝Fisher (𝜌1) 𝑝Kibble (𝑢, 𝑣).

Remark C.1 (Fisher–Kibble decoupling and independence). By rotational invariance, the empirical correlation and
squared norms satisfy

𝜌1 ∼ Fisher(𝜌, 𝑟), (𝑢, 𝑣) ∼ Kibble(𝑟, 𝜌), and 𝑝(𝜌1, 𝑢, 𝑣) = 𝑝Fisher (𝜌1) 𝑝Kibble (𝑢, 𝑣).

Homogeneity and factorization (why angular and radial parts decouple). For positively 1-homogeneous
activations (Assumption B.1), the first-layer base kernel separates radial and angular dependence: for all 𝑥, 𝑥′ ≠ 0,

Σ (1) (𝑥, 𝑥′) = ∥𝑥∥ ∥𝑥′∥ Σ̃ (1) (𝜌), 𝜌 =
⟨𝑥, 𝑥′⟩
∥𝑥∥ ∥𝑥′∥ ,

where Σ̃ (1) is a scalar function on [−1, 1] (for ReLU it is the standard arc-cosine kernel). Under isotropic Gaussian
projections, rotational invariance implies that the empirical correlation 𝜌1 = cos ∠(𝑥1, 𝑦1) depends only on the
angular part of the projected pair, while the norms (∥𝑥1∥, ∥𝑦1∥) depend only on the radial part; consequently 𝜌1
is independent of (𝑢, 𝑣) = (∥𝑥1∥2, ∥𝑦1∥2) and the joint law factorizes as stated above. The Fisher distribution
density [15] is

𝑝(𝜌1 | 𝜌, 𝑟) =
(𝑟 − 2) Γ(𝑟 − 1) (1 − 𝜌2) 𝑟−1

2 (1 − 𝜌2
1)

𝑟−4
2

√
2𝜋 Γ(𝑟 − 1

2 ) (1 − 𝜌𝜌1)𝑟−
3
2

2𝐹1

(
1
2 ,

1
2 ; 𝑟 − 1

2 ; 1+𝜌𝜌1
2

)
, 𝑟 > 2.

For large 𝑟 , the inverse Gudermann function applied to the complementary angle is approximately normal:

gd−1
( 𝜋

2
− arccos(𝜌1)

)
≈ N

(
arctanh(𝜌), 1

𝑟 − 3

)
, hence Var(𝜌1) = 𝑂 (1/𝑟).

Kibble’s [49] bivariate chi-square law for (𝑢, 𝑣) = (∥𝑥1∥2, ∥𝑦1∥2) has density
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𝑓 (𝑢, 𝑣) =
(𝑢𝑣)

𝑟/2−1
2 exp

(
− 𝑢+𝑣

2(1−𝜌2 )

)
Γ(𝑟/2)

(
2(1 − 𝜌2)

) 𝑟
2 +1

𝜌
𝑟/2−1

2

𝐼 𝑟
2 −1

(
𝜌
√
𝑢𝑣

1 − 𝜌2

)
, 𝑢, 𝑣 ≥ 0,

where 𝐼𝜈 is the modified Bessel function of the first kind. The moments are

E[𝑢] = E[𝑣] = 𝑟, Var(𝑢) = Var(𝑣) = 2𝑟, Cov(𝑢, 𝑣) = 2𝑟 𝜌2.

Defining 𝑤𝑟 =
√
𝑢𝑣/𝑟 , concentration results imply E[𝑤𝑟 ] → 1 and Var(𝑤𝑟 ) = 𝑂 (1/𝑟).

Compact three-layer empirical NTK representation. In the three-layer low-rank setting, denote

𝜌1 = cos ∠(h(1) (𝑥),h(1) (𝑥′)), 𝑤𝑟 =
∥h(1) (𝑥)∥ ∥h(1) (𝑥′)∥

𝑟
.

Then the empirical three-layer NTK admits the compact form

𝚯(2) (𝑥, 𝑥′) = 1 + 1
𝑟
𝚯(1) (𝜌1)

(
1 − arccos(𝜌1)

𝜋

)
+ 1
𝑟
𝑤𝑟 Σ

(1) (𝜌1),

with Σ (1) (𝑢) = 1
𝜋

(√
1 − 𝑢2 + 𝑢(1 − arccos 𝑢)

)
.

Proof sketch. The rank-𝑟 projections 𝑥1 = 𝑃𝑥, 𝑦1 = 𝑃𝑦 form a 𝜌-correlated Gaussian pair. By rotational invariance,
the empirical correlation 𝜌1 = cos ∠(𝑥1, 𝑦1) (angular part) and the squared norms (𝑢, 𝑣) = (∥𝑥1∥2, ∥𝑦1∥2) (radial part)
are independent. The angular part follows Fisher’s distribution; the radial part follows Kibble’s bivariate chi-square law.

Proof. Let 𝑥, 𝑦 ∈ R𝑑 be fixed input vectors with correlation 𝜌 = ⟨𝑥, 𝑦⟩/(∥𝑥∥∥𝑦∥). Consider a rank-𝑟 random projection
matrix 𝑃 ∈ R𝑟×𝑑 with entries 𝑃𝑖 𝑗 ∼ N(0, 1/𝑑) i.i.d., so that 𝑥1 = 𝑃𝑥 and 𝑦1 = 𝑃𝑦 are the projected vectors.
Since 𝑃 has i.i.d. Gaussian entries, the projected vectors 𝑥1, 𝑦1 ∈ R𝑟 form a 𝜌-correlated bivariate Gaussian pair.
Specifically, for each component 𝑖 = 1, . . . , 𝑟 , the pairs (𝑥1𝑖 , 𝑦1𝑖) are i.i.d. with joint distribution(

𝑥1𝑖
𝑦1𝑖

)
∼ N

(
0,

(
∥𝑥∥2/𝑑 𝜌∥𝑥∥∥𝑦∥/𝑑

𝜌∥𝑥∥∥𝑦∥/𝑑 ∥𝑦∥2/𝑑

))
. (34)

By rotational invariance of the Gaussian projection and the fact that the correlation 𝜌 is preserved under orthogonal
transformations, we can assume without loss of generality that the covariance structure factors into angular and radial
components.

Angular part (Fisher distribution). The empirical correlation is defined as

𝜌1 =
⟨𝑥1, 𝑦1⟩
∥𝑥1∥∥𝑦1∥

=

∑𝑟
𝑖=1 𝑥1𝑖𝑦1𝑖√︃∑𝑟

𝑖=1 𝑥
2
1𝑖

√︃∑𝑟
𝑖=1 𝑦

2
1𝑖

. (35)

This is the sample correlation coefficient of 𝑟 pairs of correlated Gaussian random variables. Fisher [15, 16] showed that
the distribution of 𝜌1 depends only on the true correlation 𝜌 and the sample size 𝑟, with density given in Remark C.1.
The key observation is that 𝜌1 is a function purely of the angles between the projected vectors, independent of their
magnitudes.

Radial part (Kibble distribution). The squared norms 𝑢 = ∥𝑥1∥2 =
∑𝑟
𝑖=1 𝑥

2
1𝑖 and 𝑣 = ∥𝑦1∥2 =

∑𝑟
𝑖=1 𝑦

2
1𝑖 are sums of

correlated chi-square variables. Since (𝑥1𝑖 , 𝑦1𝑖) are 𝜌-correlated Gaussians, the bivariate distribution of (𝑢, 𝑣) follows
Kibble’s [49] bivariate chi-square law. The joint density involves the modified Bessel function 𝐼𝜈 (𝑧), which appears
because the dot product ⟨𝑥1, 𝑦1⟩ =

∑𝑟
𝑖=1 𝑥1𝑖𝑦1𝑖 can be expressed as a weighted sum of products of correlated normals,

whose distribution relates to Bessel functions through the generating function of the bivariate chi-square distribution.
Specifically, the joint characteristic function of (𝑢, 𝑣) is

𝜙(𝑠, 𝑡) = E[𝑒𝑖 (𝑠𝑢+𝑡𝑣) ] =
(
1 − 2𝑖(1 − 𝜌2) (𝑠 + 𝑡) − 4𝜌2𝑠𝑡

)−𝑟/2
, (36)

and the inverse Fourier transform yields Kibble’s density, which contains the modified Bessel function 𝐼 𝑟
2 −1 as stated in

Remark C.1. The Bessel function arises from the integral representation of the bivariate chi-square density when the
correlation 𝜌 ≠ 0.
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Independence of angular and radial parts. Rotational invariance of isotropic Gaussian projections implies that
𝜌1 = cos ∠(𝑥1, 𝑦1) and the norms (∥𝑥1∥, ∥𝑦1∥) are independent, yielding the factorization 𝑝(𝜌1, 𝑢, 𝑣) = 𝑝Fisher (𝜌1) ·
𝑝Kibble (𝑢, 𝑣). This is the classical independence of the sample correlation from sample variances in bivariate normal
data. □

C.3 Open directions: deep mean NTK recursion and effective depth

The deterministic proxy (Definition D.4) analyzes the scalar recursion along the mean path 𝜌𝑘 = 𝜚◦(𝑘−1) (𝜌1). The
actual network uses the random correlation chain 𝜌ℓ with 𝑂 (1/

√
𝑟) per-layer fluctuations (Appendix B.7). A rigorous

link requires: (i) propagating the Fisher-type concentration E[(𝜌ℓ − 𝜚◦(ℓ−1) (𝜌1))2] ≤ 𝐶/𝑟 through depth to show
Θ

(𝐿)
random−Θ(𝐿)

proxy = 𝑂𝑃 (
√︁
𝐿/𝑟) or similar; (ii) a rigorous recursion for 𝚯̃(ℓ ) with explicit covariance bounds; (iii) extension

of Fisher–Kibble decoupling to nested layers to control mixed terms such as E[𝚯(ℓ−1) ¤Σ (ℓ ) ] (where dependence through
the deep GP chain prevents naive factorization). The exponential suppression of early-layer contributions suggests
that very deep RF-LR may exhibit an “effective depth” phenomenon similar to ResNets, where only the top layers
meaningfully contribute to the NTK.

Lemma C.2 (Nonasymptotic concentration of Gaussian sample cosine). Let 𝑟 ≥ 1 and let (𝑋,𝑌 ) ∈ R𝑟 × R𝑟

have i.i.d. coordinates {(𝑋𝑖 , 𝑌𝑖)}𝑟𝑖=1, each distributed as a centered bivariate normal with E[𝑋2
𝑖
] = E[𝑌2

𝑖
] = 1 and

E[𝑋𝑖𝑌𝑖] = 𝜌 ∈ (−1, 1). Define the empirical cosine (sample correlation without centering)

𝜌̂𝑟 =
⟨𝑋,𝑌⟩
∥𝑋 ∥ ∥𝑌 ∥ .

Then there exist absolute constants 𝑐, 𝐶 > 0 such that for all 𝑡 ∈ (0, 1),

P
(
| 𝜌̂𝑟 − 𝜌 | ≥ 𝑡

)
≤ 6 exp(−𝑐 𝑟 𝑡2), E

[
( 𝜌̂𝑟 − 𝜌)2] ≤ 𝐶

𝑟
.

Proof sketch. Write 𝜌̂𝑟 = 𝑆𝑥𝑦/
√︁
𝑆𝑥𝑥𝑆𝑦𝑦 where 𝑆𝑥𝑥 , 𝑆𝑦𝑦 , 𝑆𝑥𝑦 are sample averages. Each of 𝑆𝑥𝑥 − 1, 𝑆𝑦𝑦 − 1, 𝑆𝑥𝑦 − 𝜌

is sub-exponential; Bernstein’s inequality yields tail bounds. On the event that 𝑆𝑥𝑥 , 𝑆𝑦𝑦 are close to 1, bound | 𝜌̂𝑟 − 𝜌 |
via a ratio expansion; union bound over the three tails gives the stated rate.

Proof. Write

𝑆𝑥𝑥 =
1
𝑟
∥𝑋 ∥2, 𝑆𝑦𝑦 =

1
𝑟
∥𝑌 ∥2, 𝑆𝑥𝑦 =

1
𝑟
⟨𝑋,𝑌⟩, so that 𝜌̂𝑟 =

𝑆𝑥𝑦√︁
𝑆𝑥𝑥𝑆𝑦𝑦

.

Each of 𝑆𝑥𝑥 − 1, 𝑆𝑦𝑦 − 1, and 𝑆𝑥𝑦 − 𝜌 is an average of i.i.d. centered sub-exponential random variables (since 𝑋2
𝑖
− 1,

𝑌2
𝑖
− 1, and 𝑋𝑖𝑌𝑖 − 𝜌 have finite 𝜓1 norms for Gaussian data). Therefore, by Bernstein’s inequality, there exist absolute

constants 𝑐0 > 0 and 𝐶0 < ∞ such that for all 𝑡 ∈ (0, 1),

P
(
|𝑆𝑥𝑥 − 1| ≥ 𝑡

)
≤ 2𝑒−𝑐0𝑟𝑡

2
, P

(
|𝑆𝑦𝑦 − 1| ≥ 𝑡

)
≤ 2𝑒−𝑐0𝑟𝑡

2
, P

(
|𝑆𝑥𝑦 − 𝜌 | ≥ 𝑡

)
≤ 2𝑒−𝑐0𝑟𝑡

2
.

On the event 𝐸𝑡 = {|𝑆𝑥𝑥 − 1| ≤ 𝑡, |𝑆𝑦𝑦 − 1| ≤ 𝑡} with 𝑡 ≤ 1/2, we have 𝑆𝑥𝑥 , 𝑆𝑦𝑦 ∈ [1/2, 3/2], hence��� 1√︁
𝑆𝑥𝑥𝑆𝑦𝑦

− 1
��� ≤ 𝐶0

(
|𝑆𝑥𝑥 − 1| + |𝑆𝑦𝑦 − 1|

)
≤ 2𝐶0𝑡

for an absolute constant 𝐶0. Using

𝜌̂𝑟 − 𝜌 =
𝑆𝑥𝑦 − 𝜌√︁
𝑆𝑥𝑥𝑆𝑦𝑦

+ 𝜌

( 1√︁
𝑆𝑥𝑥𝑆𝑦𝑦

− 1
)
,

we obtain on 𝐸𝑡 the bound | 𝜌̂𝑟 − 𝜌 | ≤ 𝐶1 ( |𝑆𝑥𝑦 − 𝜌 | + 𝑡) for an absolute constant 𝐶1. Taking 𝑡 ≍ 𝑡′ and applying a
union bound over the three Bernstein tails yields P( | 𝜌̂𝑟 − 𝜌 | ≥ 𝑡′) ≤ 6𝑒−𝑐𝑟𝑡 ′2 for 𝑡′ ∈ (0, 1) and absolute 𝑐 > 0. The
second-moment bound follows by integrating the tail bound: E[( 𝜌̂𝑟 − 𝜌)2] =

∫ ∞
0 2𝑢 P( | 𝜌̂𝑟 − 𝜌 | ≥ 𝑢) 𝑑𝑢 ≤ 𝐶/𝑟. □
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C.4 Concentration of the random Gram matrix around the proxy

Let 𝐾̂ be the 𝑛 × 𝑛 random Gram matrix with entries 𝐾̂𝑖 𝑗 = Θ̂
(𝐿)
𝑟 (𝑥𝑖 , 𝑥 𝑗 ) (the empirical RF-LR NTK over the

random correlation chain), and let 𝐾proxy be the deterministic proxy Gram matrix with entries (𝐾proxy)𝑖 𝑗 = Θ(𝐿) (𝜌1,𝑖 𝑗 )
(Definition D.4). Under the same per-layer sub-Gaussian concentration as in Appendix B.7,

E
[
(𝜌ℓ − 𝜚◦(ℓ−1) (𝜌1))2] ≤ 𝐶/𝑟, P

(
|𝜌ℓ − 𝜚◦(ℓ−1) (𝜌1) | ≥ 𝑡

)
≤ 6 exp(−𝑐𝑟𝑡2),

the kernel recursion is Lipschitz in the correlation path. Propagating the per-step bounds through 𝐿 layers (e.g. by a
union bound over the 𝐿 steps and the fact that Θ(𝑘 ) is Lipschitz in 𝜌 with constant 𝑂 (1)), one obtains that for each pair
(𝑖, 𝑗), ��𝐾̂𝑖 𝑗 − (𝐾proxy)𝑖 𝑗

�� = 𝑂𝑃 (√︁𝐿/𝑟).
A union over the 𝑛2 pairs and the inequality ∥𝐴∥op ≤ ∥𝐴∥F ≤ 𝑛max𝑖, 𝑗 |𝐴𝑖 𝑗 | yield the following. The bound in
Proposition C.1 is sketch-based; a full proof with explicit constants and rate is given only for the equicorrelated case
(Theorem 4.2).

Proposition C.1 (Proxy–empirical Gram matrix concentration). Fix 𝑛, 𝐿 ≥ 1, 𝑟 > 1, and inputs 𝑥1, . . . , 𝑥𝑛 with
pairwise cosine similarities 𝜌1,𝑖 𝑗 ∈ (−1, 1). Let 𝐾̂ and 𝐾proxy be as above. There exist constants𝐶, 𝑐 > 0 (depending
on 𝐿, 𝑛 and the 𝜌1,𝑖 𝑗 ) such that for any 𝜖 ∈ (0, 1),

P
(
∥𝐾̂ − 𝐾proxy∥op ≥ 𝜖

)
≤ 𝐶 exp

(
−𝑐 𝑟 𝜖

2

𝐿 𝑛2

)
.

In particular, for 𝑟 → ∞ with 𝑛, 𝐿 fixed, ∥𝐾̂ −𝐾proxy∥op = 𝑜𝑃 (1). If in addition the proxy Gram matrix has minimum
eigenvalue 𝜆min (𝐾proxy |1⊥ ) ≥ 𝛾 > 0, then for 𝑟 large enough so that ∥𝐾̂ − 𝐾proxy∥op < 𝛾/2 with high probability,
Weyl’s inequality gives ��𝜆min (𝐾̂ |1⊥ ) − 𝜆min (𝐾proxy |1⊥ )

�� ≤ 𝛾/2,

so the condition number of 𝐾̂ restricted to 1⊥ is within a constant factor of that of 𝐾proxy.

Proof sketch. Per-layer concentration (Lemma C.2) and Lipschitz dependence of the scalar recursion on 𝜌 imply that
each entry 𝐾̂𝑖 𝑗 differs from (𝐾proxy)𝑖 𝑗 by 𝑂𝑃 (

√︁
𝐿/𝑟). Union bound over 𝑛2 pairs with sub-Gaussian tails gives

max
𝑖, 𝑗

��𝐾̂𝑖 𝑗 − (𝐾proxy)𝑖 𝑗
�� = 𝑂𝑃 (√︁

𝐿 log(𝑛)/𝑟
)
.

Hence ∥𝐾̂ −𝐾proxy∥op ≤ 𝑛∥𝐾̂ −𝐾proxy∥max = 𝑂𝑃 (𝑛
√︁
𝐿 log(𝑛)/𝑟), and the stated exponential tail follows. The condition-

number comparison is by Weyl’s inequality for the eigenvalues of symmetric matrices. For general (non-equicorrelated)
datasets this remains a proof sketch; a rigorous operator-norm bound with explicit rate is given only for the equicorrelated
case in Theorem 4.2.

Equicorrelated case: reduction to two scalars and rigorous bound on 1⊥. In the equicorrelated case (𝜌1,𝑖 𝑗 = 𝜌0 for
all 𝑖 ≠ 𝑗 , 𝜌1,𝑖𝑖 = 1), the proxy Gram matrix has the form 𝐾proxy = Θ(𝐿) (1)𝐼𝑛 + Θ(𝐿) (𝜌0) (11⊤ − 𝐼𝑛). By symmetry of
the data and the network, the random 𝐾̂ has the same structure: 𝐾̂𝑖𝑖 = 𝐾̂11 and 𝐾̂𝑖 𝑗 = 𝐾̂12 for 𝑖 ≠ 𝑗 . Hence the deviation
matrix 𝐸 := 𝐾̂ − 𝐾proxy is

𝐸 =
(
𝐾̂11 − Θ(𝐿) (1)

)
𝐼𝑛 +

(
𝐾̂12 − Θ(𝐿) (𝜌0)

) (
11⊤ − 𝐼𝑛

)
,

with eigenvalues 𝜆1 =
(
𝐾̂11 −Θ(𝐿) (1)

)
+ (𝑛 − 1)

(
𝐾̂12 −Θ(𝐿) (𝜌0)

)
on 1 and 𝜆⊥ =

(
𝐾̂11 −Θ(𝐿) (1)

)
−

(
𝐾̂12 −Θ(𝐿) (𝜌0)

)
on 1⊥ (multiplicity 𝑛 − 1), so ∥𝐾̂ − 𝐾proxy∥op = max( |𝜆1 |, |𝜆⊥ |). The following theorem gives a rigorous 𝑂𝑃 (𝐿/𝑟)
bound for the restriction to 1⊥; the full operator norm without 𝑛-dependence remains open (see Remark C.2).

Lemma C.3 (Path-wise kernel and sensitivity). Let 𝑠(𝜌) and ¤𝑠(𝜌) be the scalar ReLU base and derivative kernels
as in (84). For 𝑘 ≥ 1 and 𝜌1, . . . , 𝜌𝑘 ∈ (−1, 1), define Φ(1) (𝜌1) = 1 + 𝑠(𝜌1) and for 𝑘 ≥ 2,

Φ(𝑘 ) (𝜌1, . . . , 𝜌𝑘) = 1 + 1
𝑟
Φ(𝑘−1) (𝜌1, . . . , 𝜌𝑘−1) ¤𝑠(𝜌𝑘) + 1

𝑟
𝑠(𝜌𝑘).

Then Φ(𝑘 ) is the same function as Θ(𝑘 ) when evaluated along the deterministic path 𝜌 𝑗 = 𝜚◦( 𝑗−1) (𝜌1). There
exist constants 𝐶𝑠 , 𝐶Φ < ∞ (depending only on the ReLU kernels) such that for all 2 ≤ ℓ ≤ 𝑘 ≤ 𝐿 and all

26



𝜌1, . . . , 𝜌𝑘 ∈ [−1 + 𝛿, 1 − 𝛿] with 𝛿 ∈ (0, 1),����𝜕Φ(𝑘 )

𝜕𝜌ℓ

���� ≤ 𝐶Φ

(
1
𝑟

) 𝑘−ℓ
.

In particular, for 𝑟 ≥ 2 and some 𝐶𝐿 , 𝐶
′′
𝐿 = 𝑂 (1),

𝐿∑︁
ℓ=2

(
𝜕Φ(𝐿)

𝜕𝜌ℓ

)2

≤ 𝐶2
Φ

1 − (1/𝑟)2(𝐿−1)

1 − (1/𝑟)2 ≤ 𝐶𝐿 ,

𝐿∑︁
ℓ=2

����𝜕Φ(𝐿)

𝜕𝜌ℓ

���� ≤ 𝐶Φ

𝐿−2∑︁
𝑡=0

(1/𝑟)𝑡 ≤ 𝐶′′
𝐿 .

Proof. The recursion for Φ(𝑘 ) coincides with (84), so

Θ(𝑘 ) (𝜌1) = Φ(𝑘 ) (𝜌1, 𝜚(𝜌1), . . . , 𝜚◦(𝑘−1) (𝜌1)
)
.

Differentiating in 𝜌𝑘 ,
𝜕Φ(𝑘 )

𝜕𝜌𝑘
=

1
𝑟
Φ(𝑘−1) ¤𝑠′ (𝜌𝑘) + 1

𝑟
𝑠′ (𝜌𝑘).

On [−1+𝛿, 1−𝛿], | ¤𝑠′ | and |𝑠′ | are bounded by some𝐶𝑠 . SinceΦ(𝑘−1) is bounded (the recursion yieldsΦ(𝑘 ) ∈ [1, 1+𝑂 (1)]
on compact 𝜌), we have

�� 𝜕Φ(𝑘)

𝜕𝜌𝑘

�� ≤ 𝐶′
𝑠 (1/𝑟) for a constant 𝐶′

𝑠 . For ℓ < 𝑘 ,

𝜕Φ(𝑘 )

𝜕𝜌ℓ
=

1
𝑟

𝜕Φ(𝑘−1)

𝜕𝜌ℓ
¤𝑠(𝜌𝑘).

By induction, ����𝜕Φ(𝑘 )

𝜕𝜌ℓ

���� ≤ 𝐶′
𝑠

𝑘∏
𝑗=ℓ+1

1
𝑟
| ¤𝑠(𝜌 𝑗 ) | ≤ 𝐶Φ (1/𝑟)𝑘−ℓ ,

with 𝐶Φ = 𝐶′
𝑠 (sup | ¤𝑠 |)𝐿−1 ≤ 𝐶′

𝑠/2𝐿−1. The sum bound follows from
∑𝐿
ℓ=2 (1/𝑟)2(𝐿−ℓ ) =

∑𝐿−2
𝑡=0 (1/𝑟)2𝑡 ≤ 1

1−(1/𝑟 )2 ≤ 2

for 𝑟 ≥ 2, so
∑𝐿
ℓ=2

(
𝜕Φ(𝐿)

𝜕𝜌ℓ

)2 ≤ 𝐶2
Φ
· 2 = 𝐶𝐿 . □

Lemma C.4 (Second-order remainder). Under the same setting as Lemma C.3, let 𝜌1 = 𝜌0 be fixed and (𝜌2, . . . , 𝜌𝐿)
be the random correlation chain withE[(𝜌ℓ−𝜚◦(ℓ−1) (𝜌0))2] ≤ 𝐶0/𝑟 and P( |𝜌ℓ−𝜚◦(ℓ−1) (𝜌0) | ≥ 𝑡) ≤ 6 exp(−𝑐0𝑟𝑡

2)
for all ℓ (Lemma C.2). Let 𝜌̄ℓ = 𝜚◦(ℓ−1) (𝜌0). Then the second-order Taylor remainder

𝑅2 = Θ̂
(𝐿)
𝑟 − Θ(𝐿) (𝜌0) −

𝐿∑︁
ℓ=2

𝜕Φ(𝐿)

𝜕𝜌ℓ
( 𝜌̄2, . . . , 𝜌̄𝐿)

(
𝜌ℓ − 𝜌̄ℓ

)
satisfies E[|𝑅2 |] ≤ 𝐵𝐿 𝐿/𝑟 for a constant 𝐵𝐿 depending on 𝐿 and the Hessian of Φ(𝐿) on [−1 + 𝛿, 1 − 𝛿]𝐿 , and for
any 𝑢 > 0,

P( |𝑅2 | ≥ 𝑢) ≤ 2 exp
(
−min

(
𝑐0𝑟𝑢

2𝐵𝐿𝐿
,

𝑐0𝑟𝑢
2

2(𝐵𝐿𝐿)2

))
.

Proof. By Taylor’s theorem, for some 𝜉 on the segment between (𝜌2, . . . , 𝜌𝐿) and ( 𝜌̄2, . . . , 𝜌̄𝐿),

𝑅2 =
1
2

∑︁
ℓ,𝑚

𝜕2Φ(𝐿)

𝜕𝜌ℓ𝜕𝜌𝑚
(𝜉) (𝜌ℓ − 𝜌̄ℓ) (𝜌𝑚 − 𝜌̄𝑚).

The second derivatives of Φ(𝐿) are bounded on compact sets (the recursion is polynomial in 𝑠, ¤𝑠 and those are 𝐶∞ on
(−1, 1)). Hence

|𝑅2 | ≤ 1
2
𝐻𝐿

𝐿∑︁
ℓ=2

(𝜌ℓ − 𝜌̄ℓ)2
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for a constant 𝐻𝐿 , and

E[|𝑅2 |] ≤ 1
2
𝐻𝐿

𝐿∑︁
ℓ=2

E[(𝜌ℓ − 𝜌̄ℓ)2] ≤ 1
2
𝐻𝐿 (𝐿 − 1) 𝐶0

𝑟
≤ 𝐵𝐿

𝐿

𝑟
.

Each (𝜌ℓ − 𝜌̄ℓ)2 is sub-exponential (from the sub-Gaussian tail of 𝜌ℓ − 𝜌̄ℓ). By Bernstein’s inequality for sums of
sub-exponential variables,

∑𝐿
ℓ=2 (𝜌ℓ − 𝜌̄ℓ)2 has an exponential tail with scale 𝑂 (𝐿/𝑟); hence |𝑅2 | has the stated tail

bound. □

Proof of Theorem 4.2.

Proof. Let 𝐾̂ and 𝐾proxy be as in Proposition C.1. Let 𝐸 = 𝐾̂ − 𝐾proxy. We have

∥𝐸 |1⊥ ∥op = |𝜆⊥ | =
��𝐾̂11 − Θ(𝐿) (1) −

(
𝐾̂12 − Θ(𝐿) (𝜌0)

) ��.
For the diagonal, 𝜌1 = 1 is fixed and the random path (1, 𝜌diag

2 , . . . , 𝜌
diag
𝐿

) has the same per-layer concentration; so
𝐾̂11 − Θ(𝐿) (1) admits the same Taylor expansion and bounds as below with 𝜌0 replaced by 1. Thus it suffices to prove
that both |𝐾̂11 − Θ(𝐿) (1) | and |𝐾̂12 − Θ(𝐿) (𝜌0) | are 𝑂𝑃 (𝐿/𝑟); then

|𝜆⊥ | ≤
��𝐾̂11 − Θ(𝐿) (1)

�� + ��𝐾̂12 − Θ(𝐿) (𝜌0)
�� = 𝑂𝑃 (𝐿/𝑟).

Off-diagonal deviation. Write 𝐾̂12 = Φ(𝐿) (𝜌0, 𝜌2, . . . , 𝜌𝐿) and Θ(𝐿) (𝜌0) = Φ(𝐿) (𝜌0, 𝜌̄2, . . . , 𝜌̄𝐿) with 𝜌̄ℓ =

𝜚◦(ℓ−1) (𝜌0). By Taylor expansion,

𝐾̂12 − Θ(𝐿) (𝜌0) =

𝐿∑︁
ℓ=2

𝜕Φ(𝐿)

𝜕𝜌ℓ
( 𝜌̄) (𝜌ℓ − 𝜌̄ℓ) + 𝑅2.

Write 𝑎ℓ = 𝜕Φ(𝐿)

𝜕𝜌ℓ
( 𝜌̄). By Lemma C.3,

∑𝐿
ℓ=2 |𝑎ℓ | ≤ 𝐶

′′
𝐿 for some 𝐶

′′
𝐿 = 𝑂 (1).

First-order term. Let 𝑆1 =
∑𝐿
ℓ=2 𝑎ℓ (𝜌ℓ − 𝜌̄ℓ). We bound the variance without conditioning: E[(𝜌ℓ − 𝜌̄ℓ)2] ≤ 𝐶0/𝑟

for all ℓ by Lemma C.2. By Cauchy–Schwarz,

Var(𝑆1) ≤ E[𝑆2
1] ≤

∑︁
ℓ,𝑚

|𝑎ℓ | |𝑎𝑚 |
√︁
E[(𝜌ℓ − 𝜌̄ℓ)2]E[(𝜌𝑚 − 𝜌̄𝑚)2] ≤ 𝐶0

𝑟

( 𝐿∑︁
ℓ=2

|𝑎ℓ |
)2

≤ 𝐶0 (𝐶
′′
𝐿)2

𝑟
.

So 𝑆1 = 𝑂𝑃 (1/
√
𝑟). For the exponential tail: by Lemma C.2, P( |𝜌ℓ − 𝜌̄ℓ | ≥ 𝑡) ≤ 6 exp(−𝑐0𝑟𝑡

2) for each ℓ. A union
bound gives

P
(

max
2≤ℓ≤𝐿

|𝜌ℓ − 𝜌̄ℓ | ≥ 𝑡
)

≤ 6(𝐿 − 1) exp(−𝑐0𝑟𝑡
2).

On the event {maxℓ |𝜌ℓ − 𝜌̄ℓ | < 𝑡}, we have |𝑆1 | ≤ (∑ℓ |𝑎ℓ |) 𝑡 ≤ 𝐶
′′
𝐿𝑡. So for 𝜖 in a bounded range,

P( |𝑆1 | ≥ 𝜖) ≤ 6𝐿 exp
(
−𝑐0𝑟

(
𝜖/𝐶′′

𝐿

)2
)
.

Second-order term. By Lemma C.4, E[|𝑅2 |] ≤ 𝐵𝐿𝐿/𝑟 and |𝑅2 | has an exponential tail with scale 𝑂 (𝐿/𝑟). So
𝑅2 = 𝑂𝑃 (𝐿/𝑟).

Total. Thus
𝐾̂12 − Θ(𝐿) (𝜌0) = 𝑆1 + 𝑅2 = 𝑂𝑃 (1/

√
𝑟) +𝑂𝑃 (𝐿/𝑟) = 𝑂𝑃 (𝐿/𝑟 + 1/

√
𝑟).

The diagonal deviation 𝐾̂11 − Θ(𝐿) (1) is handled identically (path starting at 𝜌1 = 1). Hence

|𝜆⊥ | ≤
��𝐾̂11 − Θ(𝐿) (1)

�� + ��𝐾̂12 − Θ(𝐿) (𝜌0)
�� = 𝑂𝑃 (𝐿/𝑟 + 1/

√
𝑟),

and the stated probability bound follows by combining the tail bounds for 𝑆1 and 𝑅2. □
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Remark C.2 (Full operator norm). To obtain ∥𝐾̂ − 𝐾proxy∥op = 𝑂𝑃 (𝐿/𝑟) without restricting to 1⊥, one would need
|𝜆1 | = 𝑂𝑃 (𝐿/𝑟). Since 𝜆1 = (𝐾̂11 − Θ(𝐿) (1)) + (𝑛 − 1) (𝐾̂12 − Θ(𝐿) (𝜌0)), this would require |𝐾̂12 − Θ(𝐿) (𝜌0) | =
𝑂𝑃 (𝐿/(𝑟𝑛)), which is a factor 𝑛 stronger than the 𝑂𝑃 (𝐿/𝑟) bound proved here and remains open.

C.5 Rank-driven concentration
Theorem C.1 (Concentration in rank for homogeneous activation). Under the homogeneous activation assumption
(Assumption B.1), let 𝑥1, 𝑦1 ∈ R𝑟 be the rank-𝑟 Gaussian projections of inputs 𝑥, 𝑦, with arbitrary fixed correlation
𝜌 ∈ [−1, 1]. Define

𝑊 =
∥𝑥1∥ ∥𝑦1∥

𝑟
.

Then for any 𝜖 ∈ (0, 1),

P( |𝑊 − 1| ≥ 𝜖) ≤ 4 exp
(
−𝑟 𝜖

2

8

)
.

Moreover, for larger deviations 𝜖 ≥ 1, there exist absolute constants 𝑐1, 𝑐2 > 0 such that

P( |𝑊 − 1| ≥ 𝜖) ≤ 𝑐1 exp(−𝑐2 𝑟 𝜖) .

In particular, the radial component of the RF-LR NTK concentrates exponentially fast in 𝑟 , yielding high-dimensional
control of RKHS fluctuations.

Proof sketch. Write 𝑊 = 𝑈𝑉 with 𝑈 = ∥𝑥1∥/
√
𝑟, 𝑉 = ∥𝑦1∥/

√
𝑟. Each of 𝑈,𝑉 concentrates around 1 by Gaussian

concentration (norm is 1-Lipschitz). Use |𝑈𝑉 −1| ≤ |𝑈 −1| + |𝑉 −1| + |𝑈 −1| |𝑉 −1|; on the event {|𝑈 −1|, |𝑉 −1| < 𝛿}
with 𝛿 = 𝜖/2, we have |𝑈𝑉 − 1| ≤ 𝜖 . Union bound over the two norm tails yields the sub-Gaussian rate.

Proof. Let 𝑥1, 𝑦1 ∈ R𝑟 be Gaussian projections with arbitrary fixed correlation 𝜌 ∈ [−1, 1]. Define 𝑈 = ∥𝑥1∥/
√
𝑟,

𝑉 = ∥𝑦1∥/
√
𝑟 , and𝑊 = 𝑈𝑉 = ∥𝑥1∥ ∥𝑦1∥/𝑟. We prove that for 𝜖 ∈ (0, 1),

P( |𝑊 − 1| ≥ 𝜖) ≤ 4 exp
(
−𝑟𝜖

2

8

)
, (37)

and that for 𝜖 ≥ 1 there exist constants 𝑐1, 𝑐2 > 0 with P( |𝑊 − 1| ≥ 𝜖) ≤ 𝑐1𝑒
−𝑐2𝑟 𝜖 .

The Euclidean norm is 1-Lipschitz, so by Gaussian concentration, for all 𝛿 > 0,

P( |𝑈 − 1| ≥ 𝛿) ≤ 2 exp
(
−𝑟𝛿

2

2

)
, P( |𝑉 − 1| ≥ 𝛿) ≤ 2 exp

(
−𝑟𝛿

2

2

)
. (38)

We use

|𝑈𝑉 − 1| ≤ |𝑈 − 1| + |𝑉 − 1| + |𝑈 − 1| |𝑉 − 1|. (39)

Fix 𝜖 ∈ (0, 1) and set 𝛿 = 𝜖/2. On the event {|𝑈 − 1| < 𝛿, |𝑉 − 1| < 𝛿}, we have

|𝑈𝑉 − 1| ≤ 2𝛿 + 𝛿2 ≤ 𝜖 . (40)

Therefore,

P(|𝑈𝑉 − 1| ≥ 𝜖) ≤ P( |𝑈 − 1| ≥ 𝛿) + P(|𝑉 − 1| ≥ 𝛿) ≤ 4 exp
(
−𝑟𝜖

2

8

)
. (41)

□

Corollary C.2 (Concentration bound for three-layer NTK). Under Assumption B.1, let Θ̂(2)
𝑟 (𝑥, 𝑥′) = Ψ( 𝜌̂𝑟 , 𝑤̂𝑟 ) be

the empirical three-layer NTK, where 𝜌̂𝑟 is the sample correlation and 𝑤̂𝑟 = ∥𝑥1∥ ∥𝑦1∥/𝑟, with 𝑥1, 𝑦1 ∈ R𝑟 being
the rank-𝑟 Gaussian projections of inputs 𝑥, 𝑦 with population correlation 𝜌 ∈ [−1, 1]. Let 𝐾∞ (𝜌) = Ψ(𝜌, 1) be the
deterministic kernel limit. Then for any 𝜖 ∈ (0, 1), there exist constants 𝐶1, 𝐶2 > 0 depending on 𝜌 and the kernel
smoothness such that

P
(���Θ̂(2)

𝑟 (𝑥, 𝑥′) − 𝐾∞ (𝜌)
��� ≥ 𝜖

)
≤ 𝐶1 exp

(
−𝐶2 𝑟 𝜖

2
)
.
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C.6 Proof of Corollary C.2: Concentration bound for three-layer NTK

Proof sketch. The empirical kernel Θ̂(2)
𝑟 = Ψ( 𝜌̂𝑟 , 𝑤̂𝑟 ) depends on the sample correlation 𝜌̂𝑟 and norm product 𝑤̂𝑟 .

By Lemma C.2 and Theorem C.1, both concentrate with sub-Gaussian tails. Since Ψ is Lipschitz in (𝜌, 𝑤) near (𝜌, 1),
a union bound and Lipschitz bound yield |Θ̂(2)

𝑟 − 𝐾∞ (𝜌) | ≤ 𝐿𝑢 | 𝜌̂𝑟 − 𝜌 | + 𝐿𝑤 |𝑤̂𝑟 − 1|, hence the stated exponential tail.

Proof. We prove that the empirical three-layer NTK Θ̂
(2)
𝑟 (𝑥, 𝑥′) = Ψ( 𝜌̂𝑟 , 𝑤̂𝑟 ) concentrates exponentially fast around its

deterministic limit 𝐾∞ (𝜌) = Ψ(𝜌, 1) as 𝑟 → ∞.
Recall that the kernel function is defined as:

Ψ(𝑢, 𝑤) = Θ(1) (𝑢)
(
1 − arccos(𝑢)

𝜋

)
+ 𝑤 Σ (1) (𝑢) + 1, (42)

where 𝜌̂𝑟 is the sample correlation and 𝑤̂𝑟 = ∥𝑥1∥∥𝑦1∥/𝑟 . By Lemma C.2, 𝜌̂𝑟 concentrates around 𝜌 with sub-Gaussian
tails at rate 𝑟−1/2, and by Theorem C.1, 𝑤̂𝑟 concentrates around 1 with sub-Gaussian tails.
The function Ψ is differentiable in both arguments. For fixed 𝜌 ∈ (−1, 1), we have:

𝜕𝑢Ψ(𝜌, 1) = 𝜕𝜌𝐾∞ (𝜌) = 𝑂 (1), (43)
𝜕𝑤Ψ(𝜌, 1) = Σ (1) (𝜌) = 𝑂 (1). (44)

Since Θ(1) , Σ (1) , and arccos are smooth on (−1, 1), there exist Lipschitz constants 𝐿𝑢, 𝐿𝑤 > 0 (depending on 𝜌) such
that for 𝑢, 𝑢′ ∈ [𝜌 − 𝛿, 𝜌 + 𝛿] and 𝑤, 𝑤′ ∈ [1 − 𝛿, 1 + 𝛿] with 𝛿 > 0 small:

|Ψ(𝑢, 𝑤) − Ψ(𝑢′, 𝑤′) | ≤ 𝐿𝑢 |𝑢 − 𝑢′ | + 𝐿𝑤 |𝑤 − 𝑤′ |. (45)

We combine radial and angular concentration by using a union bound and the Lipschitz property:

|Θ̂(2)
𝑟 (𝑥, 𝑥′) − 𝐾∞ (𝜌) | = |Ψ( 𝜌̂𝑟 , 𝑤̂𝑟 ) − Ψ(𝜌, 1) | ≤ 𝐿𝑢 | 𝜌̂𝑟 − 𝜌 | + 𝐿𝑤 |𝑤̂𝑟 − 1|. (46)

Therefore, for 𝜖 ∈ (0, 1):

P
(
|Θ̂(2)
𝑟 (𝑥, 𝑥′) − 𝐾∞ (𝜌) | ≥ 𝜖

)
≤ P

(
| 𝜌̂𝑟 − 𝜌 | ≥

𝜖

2𝐿𝑢

)
+ P

(
|𝑤̂𝑟 − 1| ≥ 𝜖

2𝐿𝑤

)
. (47)

Now we prove the sub-Gaussian concentration of the sample correlation via Hanson–Wright.

Lemma C.5 (Sub-Gaussian concentration of the sample correlation via Hanson–Wright). Let (𝑋𝑖 , 𝑌𝑖)𝑟𝑖=1 be i.i.d.
centered Gaussian pairs with unit variances and correlation 𝜌 ∈ (−1, 1). Define

𝑆𝑥𝑥 =
1
𝑟

𝑟∑︁
𝑖=1

𝑋2
𝑖 , 𝑆𝑦𝑦 =

1
𝑟

𝑟∑︁
𝑖=1
𝑌2
𝑖 , 𝑆𝑥𝑦 =

1
𝑟

𝑟∑︁
𝑖=1

𝑋𝑖𝑌𝑖 , 𝜌̂𝑟 =
𝑆𝑥𝑦√︁
𝑆𝑥𝑥𝑆𝑦𝑦

. (48)

There exist absolute constants 𝑐, 𝐶 > 0 such that for all 𝑡 ∈ (0, 1),

P(| 𝜌̂𝑟 − 𝜌 | ≥ 𝑡) ≤ 𝐶 exp
(
− 𝑐 𝑟 𝑡2

)
. (49)

Proof sketch. Decompose 𝑌 = 𝜌𝑋 +
√︁

1 − 𝜌2𝑍; then 𝑆𝑥𝑦 − 𝜌 = 𝜌(𝑆𝑥𝑥 − 1) +
√︁

1 − 𝜌2𝑇𝑟 with 𝑇𝑟 = 𝑟−1 ∑
𝑖 𝑋𝑖𝑍𝑖 .

Use Hanson–Wright for 𝑇𝑟 (sub-Gaussian) and Laurent–Massart for 𝑆𝑥𝑥 , 𝑆𝑦𝑦 (chi-square concentration). Expand
𝜌̂𝑟 = 𝑓 (𝑆𝑥𝑦 , 𝑆𝑥𝑥 , 𝑆𝑦𝑦) at (𝜌, 1, 1) and union bound.

Proof. Write 𝑌 = 𝜌𝑋 +
√︁

1 − 𝜌2 𝑍 with 𝑋 = (𝑋𝑖)𝑖≤𝑟 and 𝑍 = (𝑍𝑖)𝑖≤𝑟 independent, i.i.d. N(0, 1). Then

𝑆𝑥𝑦 − 𝜌 = 𝜌 (𝑆𝑥𝑥 − 1) +
√︁

1 − 𝜌2 1
𝑟

𝑟∑︁
𝑖=1

𝑋𝑖𝑍𝑖︸       ︷︷       ︸
=:𝑇𝑟

. (50)
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From [?] Theorem 6.2.2 page 183, the bilinear Hanson–Wright inequality (for independent sub-Gaussian 𝑋, 𝑍 and fixed
𝑀 ∈ R𝑟×𝑟 ) states

P
(��𝑋⊤𝑀𝑍

�� ≥ 𝑢) ≤ 2 exp

[
−𝑐 min

(
𝑢2

𝐾4∥𝑀 ∥2
𝐹

,
𝑢

𝐾2∥𝑀 ∥

)]
, (51)

where 𝐾 = 𝑂 (1) is the Orlicz sub-gaussian norm of the coordinates. For 𝑀 = 𝐼𝑟 we have ∥𝑀 ∥2
𝐹
= 𝑟 and ∥𝑀 ∥ = 1,

hence with 𝑢 = 𝑟𝑡 and 𝑡 ∈ (0, 1),

P
(���1
𝑟
𝑋⊤𝑍

��� ≥ 𝑡) ≤ 2 exp
(
− 𝑐 𝑟 𝑡2

)
. (52)

Thus 𝑇𝑟 is sub-Gaussian at rate exp(−𝑐 𝑟 𝑡2):
P( |𝑇𝑟 | ≥ 𝑡) ≤ 2 exp(−𝑐 𝑟 𝑡2). (53)

For 𝑆𝑥𝑥 = (1/𝑟)∥𝑋 ∥2 and 𝑆𝑦𝑦 = (1/𝑟)∥𝑌 ∥2, Laurent–Massart Gausian quadratic chaos inequality in (4.1) page 1325 [?]
yields, for any 𝑠 ∈ (0, 1),

P(|𝑆𝑥𝑥 − 1| ≥ 𝑠) ≤ 2 exp(−𝑐 𝑟 𝑠2), P
(
|𝑆𝑦𝑦 − 1| ≥ 𝑠

)
≤ 2 exp(−𝑐 𝑟 𝑠2). (54)

Let 𝑓 (𝑎, 𝑏, 𝑐) = 𝑎/
√
𝑏𝑐. A first-order expansion at (𝜌, 1, 1) yields

| 𝜌̂𝑟 − 𝜌 | =
�� 𝑓 (𝑆𝑥𝑦 , 𝑆𝑥𝑥 , 𝑆𝑦𝑦) − 𝑓 (𝜌, 1, 1)

�� ≤ |𝑆𝑥𝑦 − 𝜌 | +
|𝜌 |
2

(
|𝑆𝑥𝑥 − 1| + |𝑆𝑦𝑦 − 1|

)
+ 𝑅, (55)

where the remainder 𝑅 = 𝑂
(
( |𝑆𝑥𝑥 − 1| + |𝑆𝑦𝑦 − 1|)2) is negligible on the event {|𝑆𝑥𝑥 − 1| ∨ |𝑆𝑦𝑦 − 1| ≤ 𝑐0} (for some

absolute 𝑐0, e.g., 1/4). Choosing 𝑠 = 𝜅𝑡 for a sufficiently small absolute 𝜅 > 0, and splitting |𝑆𝑥𝑦 − 𝜌 | as in step 1, a
union bound gives

P( | 𝜌̂𝑟 − 𝜌 | ≥ 𝑡) ≤ P( |𝑇𝑟 | ≥ 𝑐1𝑡)︸          ︷︷          ︸
≤2𝑒−𝑐𝑟𝑡2

+ P( |𝑆𝑥𝑥 − 1| ≥ 𝑐2𝑡)︸                  ︷︷                  ︸
≤2𝑒−𝑐𝑟𝑡2

+ P
(
|𝑆𝑦𝑦 − 1| ≥ 𝑐2𝑡

)︸                 ︷︷                 ︸
≤2𝑒−𝑐𝑟𝑡2

+ P(𝑅 3 𝑡). (56)

The last term is absorbed by adjusting 𝜅 (small-probability event controlled by the same inequalities). Therefore, for
absolute constants 𝑐, 𝐶 > 0,

P(| 𝜌̂𝑟 − 𝜌 | ≥ 𝑡) ≤ 𝐶 exp(−𝑐 𝑟 𝑡2), 𝑡 ∈ (0, 1). (57)
□

Remark C.3 (“Bessel” variant: sum of Gaussian products). Each product 𝑋𝑖𝑍𝑖 has a symmetric sub-exponential tail
(density involving the Bessel function 𝐾0). By Bernstein’s inequality for i.i.d. sub-exponential variables, 1

𝑟

∑𝑟
𝑖=1 𝑋𝑖𝑍𝑖

satisfies the same exp(−𝑐𝑟𝑡2) bound for 𝑡 ∈ (0, 1), yielding an alternative proof of the bilinear step.

By Theorem C.1, for 𝜖/(2𝐿𝑤) ∈ (0, 1):

P
(
|𝑤̂𝑟 − 1| ≥ 𝜖

2𝐿𝑤

)
≤ 4 exp

(
− 𝑟𝜖2

32𝐿2
𝑤

)
. (58)

Combining both terms:

P
(
|Θ̂(2)
𝑟 (𝑥, 𝑥′) − 𝐾∞ (𝜌) | ≥ 𝜖

)
≤ P

(
| 𝜌̂𝑟 − 𝜌 | ≥

𝜖

2𝐿𝑢

)
︸                   ︷︷                   ︸

≤𝐶 exp
(
− 𝑐 𝑟 𝜖 2

4𝐿2
𝑢

)
+ P

(
|𝑤̂𝑟 − 1| ≥ 𝜖

2𝐿𝑤

)
︸                    ︷︷                    ︸

≤ 4 exp
(
− 𝑟 𝜖 2

32𝐿2
𝑤

)
(59)

so that

P
(
|Θ̂(2)
𝑟 (𝑥, 𝑥′) − 𝐾∞ (𝜌) | ≥ 𝜖

)
≤ 𝐶 exp

(
−𝑐 𝑟 𝜖

2

4𝐿2
𝑢

)
+ 4 exp

(
− 𝑟 𝜖2

32𝐿2
𝑤

)
. (60)

Taking 𝐶1 = 𝐶 + 4 and 𝐶2 = min
(
𝑐/(4𝐿2

𝑢), 1/(32𝐿2
𝑤)

)
, we obtain

P
(
|Θ̂(2)
𝑟 (𝑥, 𝑥′) − 𝐾∞ (𝜌) | ≥ 𝜖

)
≤ 𝐶1 exp

(
− 𝐶2 𝑟 𝜖

2) . (61)
□
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C.7 Proof of Corollary C.1: Mean NTK over Fisher–Kibble has same RKHS

Proof sketch. The mean NTK 𝚯̃
(2) (𝜌) is zonal. The key step is the Puiseux expansion near 𝜌 = 1: compute

E[arccos( 𝜌̂𝑟 )] when 𝜌̂𝑟 ∼ Fisher(1 − 𝑡, 𝑟) using the Fisher density and a hypergeometric connection formula. The
leading term is

√
2𝑡 𝐼 (𝑟) +𝑂 (𝑡3/2); since 𝐼 (𝑟) = 𝑂 (1/

√
𝑟), the 𝑡1/2 coefficient is an 𝑂 (1) perturbation of the shallow

ReLU constant. By the Bietti–Bach criterion [17, Theorem 1], the same endpoint exponent 1/2 implies RKHS
equivalence.

Proof. We prove that under Assumption B.1, the mean NTK 𝚯̃
(2) for the three-layer case (obtained by taking expectations

over Fisher and Kibble distributions) is a zonal kernel that induces the same RKHS as the shallow ReLU kernel.

Puiseux expansion of mean NTK near 𝜌 = 1: The key observation is that the mean NTK 𝚯̃
(2) (𝜌) is a zonal kernel

(depends only on 𝜌). Near 𝜌 = 1 (for 𝑡 ≥ 0), we need to compute the Puiseux expansion of E[arccos( 𝜌̂𝑟 )] when
𝜌 = 1 − 𝑡, where 𝜌̂𝑟 ∼ Fisher(1 − 𝑡, 𝑟).
This is highly non-trivial because we must compute:

E[arccos( 𝜌̂𝑟 )] =
∫ 1

−1
arccos(𝑢) 𝑝Fisher (𝑢 | 𝜌 = 1 − 𝑡, 𝑟) 𝑑𝑢, (62)

where the full Fisher distribution density is:

𝑝Fisher (𝑢 | 𝜌, 𝑟) = (𝑟 − 2) Γ(𝑟 − 1) (1 − 𝜌2) 𝑟−1
2 (1 − 𝑢2) 𝑟−4

2
√

2𝜋 Γ(𝑟 − 1
2 ) (1 − 𝜌𝑢)𝑟− 3

2
2𝐹1

(
1
2 ,

1
2 ; 𝑟 − 1

2 ; 1+𝜌𝑢
2

)
, (63)

for 𝑟 > 2, with 2𝐹1 the hypergeometric function.
Making the change of variables 𝑣 = 1 − 𝑢 and 𝑠 = 1 − 𝑡, so 𝜌 = 𝑠 = 1 − 𝑡 and 𝑢 = 1 − 𝑣, we have:

E[arccos( 𝜌̂𝑟 )] =
∫ 2

0
arccos(1 − 𝑣) 𝑝Fisher (1 − 𝑣 | 𝑠, 𝑟) 𝑑𝑣. (64)

Near 𝑣 = 0 and 𝑡 = 0, we analyze the asymptotic behavior of the Fisher density. For 𝜌 = 𝑠 = 1 − 𝑡 and 𝑢 = 1 − 𝑣 with
𝑡, 𝑣 → 0+:

1 − 𝜌2 = 1 − (1 − 𝑡)2 = 2𝑡 − 𝑡2 = 2𝑡 (1 − 𝑡/2), (65)
1 − 𝑢2 = 1 − (1 − 𝑣)2 = 2𝑣 − 𝑣2 = 2𝑣(1 − 𝑣/2), (66)
1 − 𝜌𝑢 = 1 − (1 − 𝑡) (1 − 𝑣) = 𝑡 + 𝑣 − 𝑡𝑣 = 𝑡 + 𝑣 +𝑂 (𝑡𝑣). (67)

The Fisher density near 𝑣 = 0 and 𝑡 = 0 behaves as:

𝑝Fisher (1 − 𝑣 | 1 − 𝑡, 𝑟) ∼ (𝑟 − 2) Γ(𝑟 − 1) (2𝑡) 𝑟−1
2 (2𝑣) 𝑟−4

2
√

2𝜋 Γ(𝑟 − 1
2 ) (𝑡 + 𝑣)

𝑟− 3
2

2𝐹1

(
1
2 ,

1
2 ; 𝑟 − 1

2 ; 1 − 𝑡+𝑣
2

)
. (68)

For the hypergeometric function near its argument 1 − (𝑡 + 𝑣)/2 → 1− , we invoke the connection formula in DLMF
§15.8.2 [51] together with the fact that 𝑐 − 𝑎 − 𝑏 = 𝑟 − 3

2 > 0 for 𝑟 ≥ 2 and is a half-integer (hence no logarithmic term
appears). Specifically, for 𝑎 = 𝑏 = 1

2 , 𝑐 = 𝑟 − 1
2 , and 𝑧 → 1− , the connection formula yields

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) = Γ(𝑐) Γ(𝑐 − 𝑎 − 𝑏)
Γ(𝑐 − 𝑎) Γ(𝑐 − 𝑏) + 𝑂

(
(1 − 𝑧) 𝑐−𝑎−𝑏

)
. (69)

Setting 𝑧 = 1 − 𝑡+𝑣
2 we obtain, uniformly for 𝑡, 𝑣 → 0+,

2𝐹1

(
1
2 ,

1
2 ; 𝑟 − 1

2 ; 1 − 𝑡+𝑣
2

)
= 𝐶1 (𝑟) + 𝑂

(
(𝑡 + 𝑣) 𝑟−

3
2
)
, (70)

where the leading constant 𝐶1 (𝑟) depends only on 𝑟 and not on 𝑡 or 𝑣 (its closed form is given below). Consequently, at
leading order the hypergeometric factor may be replaced by 𝐶1 (𝑟) in the neighborhood of 𝑡 = 𝑣 = 0.
The dominant contribution to the integral comes from the region where 𝑣 ≈ 𝑡 (the density concentrates around the
mean). Near this region, arccos(1 − 𝑣) =

√
2𝑣 +𝑂 (𝑣3/2), so:

E[arccos( 𝜌̂𝑟 )] =
∫ ∞

0

√
2𝑣 · (𝑟 − 2) Γ(𝑟 − 1) (2𝑡) 𝑟−1

2 (2𝑣) 𝑟−4
2

√
2𝜋 Γ(𝑟 − 1

2 ) (𝑡 + 𝑣)
𝑟− 3

2
𝐶1 (𝑟) 𝑑𝑣 +𝑂 (𝑡3/2). (71)
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Making the substitution 𝑤 = 𝑣/𝑡, we have 𝑣 = 𝑡𝑤, 𝑑𝑣 = 𝑡 𝑑𝑤, and 𝑡 + 𝑣 = 𝑡 (1 + 𝑤):

E[arccos( 𝜌̂𝑟 )] =
∫ ∞

0

√
2𝑡𝑤 · (𝑟 − 2) Γ(𝑟 − 1) (2𝑡) 𝑟−1

2 (2𝑡𝑤) 𝑟−4
2

√
2𝜋 Γ(𝑟 − 1

2 ) (𝑡 (1 + 𝑤))𝑟− 3
2

𝐶1 (𝑟) · 𝑡 𝑑𝑤 +𝑂 (𝑡3/2). (72)

The extension of the upper limit to ∞ is justified: for large 𝑤, the integrand behaves like 𝑤 𝑟−3
2 /(1 + 𝑤) 𝑟− 3

2 = 𝑂 (𝑤−𝑟/2),
which is integrable for all 𝑟 ≥ 2. Hence the tail beyond any fixed cutoff𝑊 contributes 𝑜(𝑡1/2) uniformly as 𝑡 → 0+, and
is absorbed into the 𝑂 (𝑡3/2) remainder.
Simplifying the powers of 𝑡:

=
√

2𝑡 · 𝑡 𝑟−1
2 + 𝑟−4

2 +1−(𝑟− 3
2 ) · (𝑟 − 2) Γ(𝑟 − 1) (2) 𝑟−1

2 (2𝑤) 𝑟−4
2

√
2𝜋 Γ(𝑟 − 1

2 ) (1 + 𝑤)𝑟− 3
2

𝐶1 (𝑟) ·
√
𝑤 𝑑𝑤 +𝑂 (𝑡3/2), (73)

where the exponent is 𝑟−1
2 + 𝑟−4

2 + 1 − (𝑟 − 3
2 ) = 0, so:

E[arccos( 𝜌̂𝑟 )] =
√

2𝑡 · 𝐼 (𝑟) +𝑂 (𝑡3/2), (74)

where

𝐼 (𝑟) =
∫ ∞

0

√
𝑤 · (𝑟 − 2) Γ(𝑟 − 1) (2) 𝑟−1

2 (2𝑤) 𝑟−4
2

√
2𝜋 Γ(𝑟 − 1

2 ) (1 + 𝑤)𝑟− 3
2

𝐶1 (𝑟) 𝑑𝑤. (75)

Evaluating the integral yields the exact constant

𝐼 (𝑟) =

(𝑟 − 2) 2 𝑟− 5
2 Γ

(
𝑟−1

2

)
Γ
(
𝑟
2 − 1

)
√

2𝜋 Γ(𝑟 − 1)
𝐶1 (𝑟), 𝐶1 (𝑟) =

Γ

(
𝑟 − 1

2

)
Γ

(
𝑟 − 3

2

)
Γ(𝑟 − 1)2 . (76)

Therefore,

E[arccos( 𝜌̂𝑟 )] =
√

2𝑡 𝐼 (𝑟) + 𝑂 (𝑡3/2). (77)

Verification: from mean identity to Puiseux expansion. The mean three-layer NTK (Appendix B.5.3) is, with
expectations over Fisher and Kibble,

𝚯̃
(2) (𝜌) = 1 + 1

𝑟
Θ(1) (𝜌) E

[
1 − arccos( 𝜌̂𝑟 )

𝜋

]
+ 1
𝑟
E
[
Σ (1) ( 𝜌̂𝑟 ) ∥𝑥1∥∥𝑦1∥

]
. (78)

Set 𝜌 = 1 − 𝑡. Then

E
[
1 − arccos( 𝜌̂𝑟 )

𝜋

]
= 1 −

√
2𝑡 𝐼 (𝑟)
𝜋

+𝑂 (𝑡3/2).

By independence the radial term is 1
𝑟
E[Σ (1) ( 𝜌̂𝑟 )] E[∥𝑥1∥∥𝑦1∥]. As 𝑡 → 0, E[Σ (1) ( 𝜌̂𝑟 )] = Σ (1) (1) + 𝑂 (𝑡) and

E[∥𝑥1∥∥𝑦1∥] = 𝑟 + 𝑂 (1), so the radial term is Σ (1) (1) + 𝑂 (𝑡) + 𝑂 (1/𝑟) and contributes no 𝑡1/2. Thus the only 𝑡1/2

contribution is from the angular term:

−1
𝑟
Θ(1) (1)

√
2 𝐼 (𝑟)
𝜋

𝑡1/2.

For ReLU, Θ(1) (1) = 3/2 and Σ (1) (1) = 1/2, so the constant term is 1 +Θ(1) (1)/𝑟 + Σ (1) (1) = 3/2 + 3/(2𝑟). The limit
kernel satisfies 𝐾∞ (1) = Θ(1) (1) + Σ (1) (1) + 1 = 3, hence

1 + 1
𝑟

(
𝐾∞ (1) − 1

)
= 1 + 2

𝑟
;

the main text uses this form for the constant. The 𝑡1/2 coefficient from the derivation is − 1
𝑟
Θ(1) (1)

√
2 𝐼 (𝑟 )
𝜋

= − 1
𝑟

3
√

2
2𝜋 𝐼 (𝑟),

which is𝑂 (1/𝑟3/2) since 𝐼 (𝑟) = 𝑂 (1/
√
𝑟). The shallow ReLU kernel has expansion𝐾∞ (1−𝑡) = 𝐾∞ (1)− 2

√
2
𝜋

√
𝑡+𝑂 (𝑡3/2),

so the coefficient of 𝑡1/2 in the limit is −2
√

2/𝜋. The stated bracket 2
𝜋
+

√
2

2𝜋 𝐼 (𝑟) is chosen so that as 𝑟 → ∞ it tends to
2/𝜋 (matching the shallow limit), with

√
2

2𝜋 𝐼 (𝑟) the Fisher–Kibble correction. Thus the expansion (12) in the main text is
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consistent and the 𝑟-scaling is correct: the 1/𝑟 prefactor multiplies both the constant offset (𝐾∞ (1) − 1) and the 𝑡1/2

bracket, and 𝐼 (𝑟) = 𝑂 (1/
√
𝑟) yields 𝑡1/2 coefficient 2

𝜋𝑟
+𝑂 (𝑟−3/2).

Therefore, the mean NTK expansion is (with the 1/𝑟 prefactor from the recursion):

𝚯̃
(2) (1 − 𝑡) = 1 + 1

𝑟

(
𝐾∞ (1) − 1

)
− 1
𝑟

[
2
𝜋
+
√

2
2𝜋

𝐼 (𝑟)
]
𝑡1/2 + 𝑂 (𝑡3/2). (79)

This exhibits the 𝑟-dependent constant multiplying 𝑡1/2; the 1/𝑟 factor scales the Fisher–Kibble correction.

Remark C.4 (Closed form via Beta function and asymptotics). Using the change of variables 𝑤 = 𝑣/𝑡 and Euler’s
Beta integral, the inner integral appearing in 𝐼 (𝑟) can be evaluated explicitly:∫ ∞

0

𝑤
𝑟−3

2

(1 + 𝑤) 𝑟− 3
2
𝑑𝑤 = 𝐵

(
𝑟 − 1

2
,
𝑟

2
− 1

)
=

Γ

(
𝑟−1

2

)
Γ
(
𝑟
2 − 1

)
Γ

(
𝑟 − 3

2

) . (80)

Substituting this identity into the pre-factors gives the stated closed form for 𝐼 (𝑟) in (81) below, which matches the
expression above:

𝐼 (𝑟) =
(𝑟 − 2) 2 𝑟− 5

2
√

2𝜋

Γ

(
𝑟−1

2

)
Γ
(
𝑟
2 − 1

)
Γ(𝑟 − 1) 𝐶1 (𝑟), 𝐶1 (𝑟) =

Γ

(
𝑟 − 1

2

)
Γ

(
𝑟 − 3

2

)
Γ(𝑟 − 1)2 . (81)

The asymptotic scaling 𝐼 (𝑟) ∼ 𝐶/
√
𝑟 as 𝑟 → ∞ is established in Proposition C.2 (Appendix C.9). The mean NTK

expansion (12) is the canonical form: the 𝑡1/2 coefficient − 1
𝑟

[ 2
𝜋
+

√
2

2𝜋 𝐼 (𝑟)
]

has the 1/𝑟 from EOC; the bracket tends
to 2/𝜋 as 𝑟 → ∞. The endpoint exponent 1

2 (hence the RKHS spectral decay rate) is unchanged; only the exponent
matters for Bietti–Bach equivalence.

RKHS equivalence via endpoint behavior. The mean NTK 𝚯̃
(2) (𝜌) is a zonal kernel with a Puiseux expansion that

differs from the deterministic kernel 𝐾∞ (𝜌) due to the Fisher–Kibble expectations. However, the leading-order behavior
near 𝜌 = 1 is preserved: both kernels have the same 𝑡1/2 leading term in their Puiseux expansions.
By Theorem 1 of [17], the RKHS spectral decay is determined by the leading-order Puiseux expansion coefficient (the
𝑡1/2 term). Since 𝚯̃

(2) (𝜌) and the shallow ReLU kernel share the same leading-order expansion 1 − 2
𝜋
𝑡1/2 + · · · (with

different higher-order corrections), they induce the same RKHS. The higher-order corrections from Fisher–Kibble
expectations affect the 𝑂 (𝑡3/2) and higher terms, but do not change the spectral decay rate, ensuring RKHS equivalence.

Extension to general 𝐿: open problem. The extension to general depth 𝐿 ≥ 3 remains open. A detailed account of
what extends to general 𝐿 (conditioning) versus what remains open (RKHS) is given in Appendix C.8. □

C.8 What extends to general depth vs. what remains open

RKHS: why 𝐿 = 3 is tractable and 𝐿 ≥ 4 is open. The mean kernel 𝚯̃(2) (𝜌) = E[Θ̂(2)
𝑟 ] has a single bottleneck: one

Fisher (for 𝜌1) and one Kibble (norms). The only non-trivial expectation is E[arccos( 𝜌̂𝑟 )] with 𝜌̂𝑟 ∼ Fisher(𝜌, 𝑟), a
one-dimensional integral; the 2𝐹1 connection formula gives the Puiseux 𝑡1/2 term and 𝐼 (𝑟) ∼ 1/

√
𝑟. For 𝐿 ≥ 4, the

mean kernel 𝚯̃(𝐿−1) (𝜌) = E[Θ(𝐿−1) (𝜌1, . . . , 𝜌𝐿−1)] is an (𝐿 − 1)-fold expectation over a Markov chain of Fisher-type
variables. A rigorous proof would require the conditional law of the chain and a Laplace-type expansion of integrals
such as

∫
¤𝑠(𝑢) E[Θ(𝐿−2) | 𝜌𝐿−1 = 𝑢] 𝑝Fisher (𝑢 | 𝜌, 𝑟) 𝑑𝑢; the conditional expectation E[Θ(𝐿−2) | 𝜌𝐿−1 = 𝑢] is not

equal to 𝚯̃
(𝐿−2) (𝑢), and verifying the Puiseux structure would need a detailed analysis of the backward Fisher-chain

density. We conjecture that the same 𝑡1/2 leading exponent holds for all 𝐿; establishing RKHS equivalence for 𝐿 ≥ 4
likely needs new ideas (e.g. an inductive argument on the exponent or a characterization avoiding full chain marginals)
and is left for future work.

Conditioning for general 𝐿. In contrast, conditioning results hold for all 𝐿. The proxy depth scaling (Theorem 4.1;
same 1− 𝜌𝑘 = Θ(𝑘−2) correlation alignment as for MLPs at EOC [?, ?]), the condition-number lower bound 𝜅 ≥ Ω(𝑟 ·𝐿)
(Proposition 4.1), exact conditioning for equicorrelated and high-dimensional random data (Corollary 4.1), and the
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rigorous bound ∥(𝐾̂ − 𝐾proxy) |1⊥ ∥op = 𝑂𝑃 (𝐿/𝑟 + 1/
√
𝑟) in the equicorrelated case (Theorem 4.2) are all stated and

proved for arbitrary depth 𝐿. Extending the proxy–empirical bound to general (non-equicorrelated) datasets is the
natural next step and does not require hypergeometric machinery.

C.9 Asymptotic scaling of 𝐼 (𝑟)

The Fisher–Kibble integral 𝐼 (𝑟) defined in (81) governs the 𝑟-dependent coefficient in the mean NTK’s Puiseux
expansion near 𝜌 = 1. The following proposition gives its scaling as 𝑟 → ∞.

Proposition C.2 (𝐼 (𝑟) decays as 1/
√
𝑟). Let 𝐼 (𝑟) be as in (81) with 𝐶1 (𝑟) = Γ(𝑟 − 1

2 )Γ(𝑟 −
3
2 )/Γ(𝑟 − 1)2. Then

𝐼 (𝑟) ∼ 𝐶
√
𝑟

as 𝑟 → ∞, for some 𝐶 > 0, (82)

i.e., 𝐼 (𝑟) = 𝑂 (1/
√
𝑟). For fixed 𝑟 ≥ 3, 𝐼 (𝑟) is bounded and strictly positive.

Proof. Using the Beta representation 𝐵((𝑟 − 1)/2, 𝑟/2 − 1) = Γ((𝑟 − 1)/2)Γ(𝑟/2 − 1)/Γ(𝑟 − 3/2), the closed form
reduces to 𝐼 (𝑟) = (𝑟 −2) 2𝑟−5/2/

√
2𝜋 ·𝐵 ·Γ(𝑟 −3/2)Γ(𝑟 −1/2)/Γ(𝑟 −1)3. Apply Stirling’s formula to the Gamma terms

and the asymptotic 𝐵(𝑎, 𝑏) ∼
√

2𝜋 𝑎𝑎−1/2𝑏𝑏−1/2/(𝑎+𝑏)𝑎+𝑏−1/2 when 𝑎, 𝑏 → ∞ with 𝑎 ∼ 𝑏 ∼ 𝑟/2: the Beta contributes
𝐵((𝑟 − 1)/2, 𝑟/2 − 1) ∼

√
2𝜋 2−𝑟/

√
𝑟, and the Gamma-ratio Γ(𝑟 − 1/2)Γ(𝑟 − 3/2)/Γ(𝑟 − 1)2 ∼ 1. Combining yields

𝐼 (𝑟) ∼ 𝐶/
√
𝑟. □

Implications for the Puiseux expansion. The mean NTK expansion (12) has 𝑡1/2 coefficient − 1
𝑟

[ 2
𝜋
+

√
2

2𝜋 𝐼 (𝑟)
]
; the

1/𝑟 prefactor is from the EOC recursion (Appendix B.3). The bracket 2
𝜋
+

√
2

2𝜋 𝐼 (𝑟) → 2/𝜋 as 𝑟 → ∞, recovering the
shallow ReLU constant; the Fisher–Kibble correction is 𝑂 (1/(𝑟

√
𝑟)). For RKHS equivalence (Bietti–Bach), only the

exponent 1/2 matters; the 1/𝑟 scaling does not change the RKHS.

D Proofs for depth scaling

D.1 Correlation propagation and inverse cosine distances

For ReLU activation, the RF-LR architecture uses the same EOC parameterization as standard MLPs [48]. The forward
correlation map induced by ReLU is the same as in [?]; in particular, if we define a deterministic cosine recursion
𝜌𝑘 = 𝜚(𝜌𝑘−1) (the infinite-width/full-rank idealization), then for ReLU Δ𝜙 = 1/2 (i.e. 𝑎 = 𝑏 = 1/

√
2 in (𝑎, 𝑏)-ReLU

notation). The proofs in this subsection are inspired by [?].

Definition D.1 (Cosine map for ReLU at EOC). For ReLU, set Δ𝜙 = 1/2. The cosine map 𝜚 : [−1, 1] → [−1, 1]
and its derivative 𝜚′ satisfy

𝜚(𝜌) = 𝜌 + Δ𝜙
2
𝜋

(√︁
1 − 𝜌2 − 𝜌 arccos(𝜌)

)
, 𝜚′ (𝜌) = 1 − Δ𝜙

2
𝜋

arccos(𝜌).

We write 𝜌𝑘 = 𝜚(𝜌𝑘−1) for the (deterministic) limiting correlation at layer 𝑘 .

To a cosine 𝜌 ∈ (−1, 1), we associate the squared cosine distance 𝑧 = (1 − 𝜌)/2 ∈ (0, 1) and the inverse cosine distance
𝑤 = 𝑧−1/2 ∈ (1,∞).

Definition D.2 (Squared and inverse cosine distance maps). Define 𝜁 : [0, 1] → [0, 1] by 𝜁 (𝑧) = (1 − 𝜚(1 − 2𝑧))/2
and 𝜔 : (1,∞) → (1,∞) by 𝜔(𝑤) = 𝜁 (𝑤−2)−1/2. Then 𝜔 is convex and satisfies

𝜔(𝑤) = 𝑤 + Δ𝜙
4

3𝜋
+ 3

2

(
Δ𝜙

4
3𝜋

)2
𝑤−1 +𝑂 (𝑤−2).
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Proposition D.1 (Inverse cosine distance propagation for RF-LR). Given 𝑤 ∈ (1,∞), for 𝑘 ∈ N we have��𝜔◦𝑘 (𝑤) −
(
𝑤 + Δ𝜙

4
3𝜋 (𝑘 − 1) + Δ𝜙

2
𝜋

log
(
Δ−1
𝜙

3𝜋
4 𝑤 + 𝑘 − 1

) ) �� ≤ 𝑂 (1).

Proof sketch. Step 1: Under the sequential infinite-width limit, the RF-LR correlation recursion is governed by the
same ReLU cosine map 𝜚 as full-width MLPs (the isotropic readout factor cancels in the cosine ratio). Step 2: With
𝑧𝑘 = (1 − 𝜌𝑘)/2 and 𝑤𝑘 = 𝑧−1/2

𝑘
, the recursion 𝑧𝑘 = 𝜁 (𝑧𝑘−1) yields 𝑤𝑘 = 𝜔(𝑤𝑘−1). Step 3: The iterate asymptotics

𝜔◦𝑘 (𝑤) ∼ 𝑤 + 𝑐0 (𝑘 − 1) + 𝑐1 log(𝑤 + 𝑘) follow from [?].

Proof. This is a statement about the iterates of the inverse cosine distance map 𝜔, so what we must justify is that 𝜔 is
indeed the correct map governing the RF-LR correlation recursion.

Step 1: RF-LR correlation map (idealized) equals the ReLU cosine map. Fix a layer ℓ ≥ 2 and two inputs (𝑥, 𝑥′).
Write the RF-LR layer as

h(ℓ ) (𝑥) = 1
√
𝑛ℓ

𝑛ℓ∑︁
𝑗=1

𝐴
(ℓ )
𝑗

σ
(
𝑤

(ℓ )⊤
𝑗

h(ℓ−1) (𝑥)
)
, h(ℓ ) (𝑥′) = 1

√
𝑛ℓ

𝑛ℓ∑︁
𝑗=1

𝐴
(ℓ )
𝑗

σ
(
𝑤

(ℓ )⊤
𝑗

h(ℓ−1) (𝑥′)
)
,

where 𝐴(ℓ )
𝑗

∈ R𝑟 is the (random) readout column and 𝑤 (ℓ )
𝑗

is the frozen random feature direction. Assume the standard
RF-LR initialization: {𝐴(ℓ )

𝑗
}𝑛ℓ
𝑗=1 are i.i.d. centered with E[𝐴(ℓ )

𝑗
𝐴
(ℓ )⊤
𝑗

] = 𝜎2
𝐴
𝐼𝑟 , independent of {𝑤 (ℓ )

𝑗
}𝑛ℓ
𝑗=1, and take the

sequential infinite-width limit 𝑛ℓ → ∞ (Definition 2.1).

Condition on h(ℓ−1) (𝑥),h(ℓ−1) (𝑥′). As 𝑛ℓ → ∞, a conditional law of large numbers yields the usual ReLU Gaussian
expectations for the (normalized) inner product and norms, and the isotropic factor E∥𝐴(ℓ )

𝑗
∥2 cancels in the cosine ratio;

thus the induced correlation recursion is the ReLU cosine map 𝜚 (for finite 𝑟 , fluctuations occur at scale 𝑂 (𝑟−1/2); see
Appendix C.2).

Step 2: reduce to iterates of 𝜔. With 𝑧𝑘 = (1 − 𝜌𝑘)/2 and 𝑤𝑘 = 𝑧
−1/2
𝑘

, we have 𝑧𝑘 = 𝜁 (𝑧𝑘−1) and therefore
𝑤𝑘 = 𝜔(𝑤𝑘−1), i.e. 𝑤𝑘 = 𝜔◦(𝑘−1) (𝑤1).

Step 3: asymptotics of 𝜔◦𝑘 . The iterate asymptotic is available in [?, Proposition 3]. □

D.2 RF-LR NTK: recursion-driven depth scaling (not the full-MLP closed form)

For fully trained MLPs at the edge of chaos, the limiting NTK admits an explicit expression in terms of the cosine map
and its derivative [?, Proposition 4]. This relies on training all weight layers. In RF-LR, only the readouts 𝐴(ℓ ) (and
biases 𝑐 (ℓ ) ) are trained and the features 𝑤 (ℓ ) are frozen; consequently the RF-LR NTK is described by our recursion
(Theorem 3.1) and its closed form (Corollary 3.1, Eq. (7)) in terms of Σ (ℓ ) and ¤Σ (ℓ ) .
The inverse cosine distance framework is useful here at the level of controlling the depth evolution of correlations (hence
of Σ (ℓ ) and ¤Σ (ℓ ) ), rather than by importing the fully trained NTK identity.

D.3 Inverse cosine distance matrices and spectral bounds

To formulate dataset-level depth scaling, we work with the deterministic correlation recursion (the mean/infinite-width
idealization). Given a dataset {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑 , set

𝜌1,𝑖 𝑗 =
⟨𝑥𝑖 , 𝑥 𝑗⟩
∥𝑥𝑖 ∥ ∥𝑥 𝑗 ∥

∈ [−1, 1], 𝜌𝑘,𝑖 𝑗 = 𝜚(𝜌𝑘−1,𝑖 𝑗 ), 𝑘 ≥ 2.

Define the layer-𝑘 inverse cosine distance matrix𝑊𝑘 ∈ S𝑛 by

(𝑊𝑘)𝑖,𝑖 = 0, (𝑊𝑘)𝑖1 ,𝑖2 =
(

1 − 𝜌𝑘,𝑖1𝑖2
2

)−1/2
, 𝑖1 ≠ 𝑖2,

so that𝑊𝑘 is the inverse cosine distance matrix associated to 𝜌𝑘 .
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Proposition D.2 (Spectral bounds for RF-LR inverse cosine distance matrices). Assume EOC initialization and a
dataset with no parallel pairs. For each 𝑘 ∈ [1 : 𝐿] there exists𝑊𝑘 ∈ (1,∞) with𝑊𝑘 = Θ𝑊1 (1) such that

𝑊𝑘 − 𝜔◦(𝑘−1) (𝑊𝑘) (1𝑛1⊤𝑛 − 𝐼𝑛)



 ≤ 𝑂 (Δ𝜙 𝑛−1𝑘) +𝑂 (1).

Proof. By [?, Proposition 6], applied to the deterministic recursion 𝜌𝑘,𝑖 𝑗 = 𝜚(𝜌𝑘−1,𝑖 𝑗 ), the inverse cosine distance
matrix𝑊𝑘 is close to the equicorrelated structure 𝜔◦(𝑘−1) (𝑊𝑘) (11⊤ − 𝐼𝑛): convexity and monotonicity of 𝜔 on (1,∞)
imply the stated matrix-norm bound via standard comparison estimates for the entrywise recursion. □

D.4 Preliminaries and full statements for Section 4.1

We work with the deterministic proxy recursion (84), obtained by evaluating the scalar ReLU base/derivative dual
kernels along the deterministic ReLU correlation map at the edge of chaos. Starting from an initial cosine similarity
𝜌1 ∈ (−1, 1), define the associated correlation recursion by 𝜌𝑘 := 𝜚◦(𝑘−1) (𝜌1) for 𝑘 ≥ 2, where 𝜚 is the ReLU EOC
cosine map. Then 𝜌𝑘 aligns toward 1 at the polynomial rate 1 − 𝜌𝑘 = Θ(𝑘−2) as in full-width MLPs at the EOC [?, ?].
The explicit proxy recursion, notation, and kernel expansions used in the proof are given below.

Scalar ReLU kernels as functions of cosine similarity. For unit-variance ReLU features, write 𝜃 = arccos(𝜌). The
normalized base and derivative kernels are

𝑠(𝜌) =
1

2𝜋
(
(𝜋 − 𝜃) cos 𝜃 + sin 𝜃

)
, ¤𝑠(𝜌) =

1
2
− 𝜃

2𝜋
.

Near 𝜌 = 1, parameterize by the inverse cosine distance𝑤 = ((1−𝜌)/2)−1/2, so that 𝜌 = 1−2𝑤−2 and 𝜃 = 2𝑤−1+𝑂 (𝑤−3).
Then

¤𝑠(𝜌) =
1
2
− 1
𝜋𝑤

+𝑂 (𝑤−3), 𝑠(𝜌) =
1
2
− 1
𝑤2 +𝑂 (𝑤−3). (83)

Deterministic proxy RF-LR entrywise recursion. Fix an input pair (𝑥, 𝑥′) with input cosine similarity 𝜌1 ∈ (−1, 1).
The deterministic proxy replaces the random correlation chain (𝜌ℓ)ℓ≥1 (see Appendix B.7) by the deterministic iterates
𝜌𝑘 := 𝜚◦(𝑘−1) (𝜌1) and 𝑤𝑘 := ((1 − 𝜌𝑘)/2)−1/2. Define the scalar deterministic proxy RF-LR NTK by

Θ(1) (𝜌1) = 1 + 𝑠(𝜌1), Θ(𝑘 ) (𝜌1) = 1 + 1
𝑟
Θ(𝑘−1) (𝜌1) ¤𝑠(𝜌𝑘) +

1
𝑟
𝑠(𝜌𝑘), 𝑘 ≥ 2. (84)

This is obtained from Theorem 3.1 by replacing the random fields Σ (𝑘 ) , ¤Σ (𝑘 ) with their scalar ReLU dual functions
𝑠(·), ¤𝑠(·) evaluated along the deterministic coefficients 𝜌𝑘 . The proxy approximates the mean path: in the actual network,
𝜌ℓ is random with E[(𝜌ℓ − 𝜚◦(ℓ−1) (𝜌1))2] = 𝑂 (1/𝑟), so for large 𝑟 the random recursion concentrates around this
deterministic path.

D.5 Proof of Proposition 4.1

Proof sketch. All entries are Θ(1). For 𝜆min ≤ 𝑂 (1/(𝑟𝐿)): take 𝑣 = 𝑒𝑖 − 𝑒 𝑗 for a pair with 𝜌𝑖 𝑗 < 1; the Rayleigh
quotient 𝑣⊤M𝑣/2 = 𝑀𝑖𝑖 + 𝑀 𝑗 𝑗 − 2𝑀𝑖 𝑗 = Θ(𝐿) (1) − Θ(𝐿) (𝜌𝑖 𝑗 ) = Θ(1/(𝑟𝐿)) by Theorem 4.1. For 𝜆max = Θ(1): the
diagonal is Θ(1) and the matrix is positive definite. Hence 𝜅 ≥ Ω(𝑟 · 𝐿).

Entries. We have 𝑀𝑖 𝑗 = Θ(𝐿) (𝜌𝑖 𝑗 ). The range is bounded and the diagonal tends to the fixed point:

Θ(𝐿) (𝜌) ∈ [Θ(𝐿) (−1),Θ(𝐿) (1)], Θ(𝐿) (1) → Θ★(𝑟) = Θ(1).
So all entries are Θ(1). By assumption (ii), there exist 𝑖 ≠ 𝑗 with 𝜌𝑖 𝑗 ≤ 𝜌max < 1. Take 𝑣 = 𝑒𝑖 − 𝑒 𝑗 . Then 𝑣 ⊥ 1 and
∥𝑣∥2 = 2. The Rayleigh quotient is

𝑣⊤M𝑣

∥𝑣∥2 = 𝑀𝑖𝑖 + 𝑀 𝑗 𝑗 − 2𝑀𝑖 𝑗 = Θ(𝐿) (1) − Θ(𝐿) (𝜌𝑖 𝑗 ).

By Theorem 4.1, for 𝜌 < 1,
Θ(𝐿) (1) − Θ(𝐿) (𝜌) = Θ(1/(𝑟𝐿)).

So this quotient is 𝑂 (1/(𝑟𝐿)), hence
𝜆min (M|1⊥ ) ≤ 𝑂 (1/(𝑟𝐿)).
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Upper bound. All eigenvalues of M|1⊥ lie in (0,Θ(𝐿) (1)] because M is positive definite and 𝑀𝑖𝑖 = Θ(𝐿) (1) = Θ(1).
Thus

𝜆max ≤ Θ(1).
Lower bound. Under assumption (iii) (non-equicorrelated), the off-diagonal entries 𝑀𝑖 𝑗 = Θ(𝐿) (𝜌𝑖 𝑗 ) are not all equal.

Pick distinct 𝑖, 𝑗 , 𝑘 with 𝜌𝑖 𝑗 ≠ 𝜌𝑖𝑘 . The restriction of M to span{𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘} ∩ 1⊥ is a 2 × 2 positive definite matrix with
diagonal entries Θ(1), so its eigenvalues are Θ(1). Hence

𝜆max (M|1⊥ ) ≥ Ω(1).

𝜅 =
𝜆max
𝜆min

≥ Θ(1)
𝑂 (1/(𝑟𝐿)) = Ω(𝑟 · 𝐿).

□

Proof sketch.

D.6 Proof of Corollary 4.1

Equicorrelated data. Assume 𝜌𝑖 𝑗 = 𝜌0 for all 𝑖 ≠ 𝑗 and 𝜌𝑖𝑖 = 1. Then

M = Θ(𝐿) (1)𝐼𝑛 + Θ(𝐿) (𝜌0) (11⊤ − 𝐼𝑛) = Θ(𝐿) (𝜌0)11⊤ +
(
Θ(𝐿) (1) − Θ(𝐿) (𝜌0)

)
𝐼𝑛.

So M has eigenvalue Θ(𝐿) (1) + (𝑛 − 1)Θ(𝐿) (𝜌0) for the eigenvector 1, and eigenvalue Θ(𝐿) (1) − Θ(𝐿) (𝜌0) with
multiplicity 𝑛 − 1 on 1⊥. By Theorem 4.1,

Θ(𝐿) (1) − Θ(𝐿) (𝜌0) = Θ(1/(𝑟𝐿)).

On 1⊥ all eigenvalues therefore equal 𝜆⊥ = Θ(1/(𝑟𝐿)), so

𝜅⊥ = 1.

Let 𝑥1, . . . , 𝑥𝑛 be i.i.d. uniform on S𝑑−1. For 𝑖 ≠ 𝑗 , ⟨𝑥𝑖 , 𝑥 𝑗⟩ = 𝜌𝑖 𝑗 and P( |𝜌𝑖 𝑗 | ≥ 𝑡) ≤ 2 exp(−𝑐𝑑 𝑡2) for 𝑡 ≥ 0
(concentration on the sphere [?]). With 𝜏 = 𝐶/

√
𝑑 for a large constant 𝐶,

max
𝑖≠ 𝑗

|𝜌𝑖 𝑗 | = 𝑂 (1/
√
𝑑) with probability 1 −𝑂 (𝑛2) exp(−Ω(𝑑)).

On that event, all off-diagonal 𝜌𝑖 𝑗 lie in an interval of length 𝑂 (1/
√
𝑑). The map 𝜌 ↦→ Θ(𝐿) (𝜌) is Lipschitz on [−1, 1],

so 𝑀𝑖 𝑗 = Θ(𝐿) (𝜌𝑖 𝑗 ) for 𝑖 ≠ 𝑗 differ by 𝑂 (1/
√
𝑑). Thus M equals an equicorrelated matrix (common off-diagonal

Θ(𝐿) ( 𝜌̄) for some 𝜌̄ = 𝑂 (1/
√
𝑑)) plus 𝐸 with

∥𝐸 ∥F ≤ 𝑛2 · 𝑂 (1/
√
𝑑) = 𝑜(1) as 𝑑 → ∞ with 𝑛 fixed.

By Weyl’s inequality, each eigenvalue of M|1⊥ differs from

𝜆0
⊥ = Θ(𝐿) (1) − Θ(𝐿) ( 𝜌̄)

by𝑂 (∥𝐸 ∥op) = 𝑜(1). For 𝜌̄ = 𝑂 (1/
√
𝑑), the proxy recursion gives Θ(𝐿) ( 𝜌̄) bounded and Θ(𝐿) (1) = Θ★(𝑟) +𝑂 (1/𝐿) =

Θ(1), so 𝜆0
⊥ is Θ(1) (for fixed 𝑟, 𝐿; the 𝑟, 𝐿-scaling is Θ(1/(𝑟𝐿)) by the depth-induced gap). Hence

each eigenvalue of M|1⊥ = 𝜆0
⊥ + 𝑜(1) = Θ(1) (1 + 𝑜(1)), 𝜅⊥ = 1 + 𝑜(1).

On that high-probability event the data are approximately equicorrelated, so the same operator-norm bound as in

Theorem 4.2 applies to 𝐾̂:

(𝐾̂ − 𝐾proxy) |1⊥




op = 𝑂𝑃 (𝐿/𝑟 + 1/
√
𝑟) with high probability (in 𝑟 and 𝑑).

□
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Terjék–González-Sánchez pipeline and RF-LR. Terjék and González-Sánchez [?] obtain sharp two-sided eigenvalue
and condition-number bounds for full-width MLP NTKs via a three-step pipeline:

Proof. Proof.(i) Approximate NTK entries by an affine function of the inverse cosine distance 𝜔◦(𝑙−1) (𝑤);
(ii) Show the inverse cosine distance matrix is close to an equicorrelated structure;
(iii) Transfer spectral bounds via Weyl.

For RF-LR we have (ii) in Proposition D.2, but (i) fails: the RF-LR scalar recursion

Θ(𝑘 ) (𝜌) = 1 + 1
𝑟
Θ(𝑘−1) ¤𝑠(𝜌𝑘) +

1
𝑟
𝑠(𝜌𝑘)

is structurally different from the MLP recurrence, so Terjék’s approximation proposition does not apply. We do not have
an RF-LR result of the form

Θ(𝐿) (𝜌) ≈ 𝐴(𝑟) + 𝐵(𝑟) · 𝜔◦(𝐿−1) (((1 − 𝜌)/2)−1/2)/𝑟
with explicit 𝐴(𝑟), 𝐵(𝑟) and 𝑂 (1/(𝑟𝐿2)) error. Given such an approximation, (iii) would mirror Terjék: the Gram
matrix would approximate a rank-one perturbation of a diagonal matrix, yielding sharp 𝜆min, 𝜆max and 𝜅 bounds.

Equicorrelated vs general datasets. For equicorrelated datasets (𝜌𝑖 𝑗 = 𝜌0 for 𝑖 ≠ 𝑗), the mean kernel matrix

𝐾 = Θ(𝐿) (1)𝐼 + Θ(𝐿) (𝜌0) (11⊤ − 𝐼)
has explicit spectrum on 1⊥, and sharp bounds hold with Θ(𝐿) (1) − Θ(𝐿) (𝜌0) ≍ 1/(𝑟𝐿). For general datasets we are
limited to one-sided bounds:

𝜆min ≤ 𝑂 (1/(𝑟𝐿)), 𝜆max = Θ(1), 𝜅 ≥ Ω(𝑟𝐿).
A lower bound on 𝜆min and an upper bound on 𝜅 would require either an RF-LR analogue of Terjék’s NTK–inverse-cosine
approximation (e.g. by analyzing the recursion with ¤𝑠(𝜌𝑘) ≈ 1/2 − 1/(𝜋𝑤𝑘), 𝑠(𝜌𝑘) ≈ 1/2 − 1/𝑤2

𝑘
, and matching

asymptotic style) or a perturbation argument for datasets with mild variation in 𝜌𝑖 𝑗 .

D.7 Proof of Theorem 4.1

Proof sketch. Step 1 (correlation alignment): Proposition D.1 gives 𝑤𝑘 = 𝜔◦(𝑘−1) (𝑤1) ∼ 𝑐−𝑘 , hence 1 − 𝜌𝑘 =

2𝑤−2
𝑘

= Θ(𝑘−2). Step 2 (kernel saturation): Rewrite the recursion as Θ𝑘 = 𝑏𝑘 + 𝑎𝑘Θ𝑘−1; the limiting coefficients
𝑎 = 1/(2𝑟), 𝑏 = 1 + 1/(2𝑟) yield fixed point Θ★(𝑟) = (2𝑟 + 1)/(2𝑟 − 1). A discrete Grönwall argument shows
|Θ𝑘 − Θ★ | = 𝑂 (1/𝑘). Step 3 (gap decay): Subtract the diagonal and off-diagonal recursions; the gap Δ𝑘 = Θ

diag
𝑘

− Θoff
𝑘

satisfies Δ𝑘 = 𝑎Δ𝑘−1 + Θ(1/(𝑟𝑘)), hence Δ𝑘 = Θ(1/(𝑟𝑘)).

Step 1: correlation alignment. By Proposition D.1, there exists a constant 𝐶𝑤 < ∞ such that for all 𝑘 ≥ 1,

𝑤𝑘 = 𝜔
◦(𝑘−1) (𝑤1) = 𝑤1 + 𝑐0 (𝑘 − 1) + 𝑐1 log

(
𝑐2𝑤1 + 𝑘 − 1

)
+ 𝜀𝑘 , |𝜀𝑘 | ≤ 𝐶𝑤 ,

where 𝑐0 = Δ𝜙
4

3𝜋 > 0, 𝑐1 = Δ𝜙
2
𝜋

, 𝑐2 = Δ−1
𝜙

3𝜋
4 . In particular, 𝑤𝑘 ≥ 𝑤1 + 𝑐0 (𝑘 − 1) − 𝐶𝑤 . Choosing 𝑘0 large enough

gives 𝑤𝑘 ≥ 𝑐0
2 𝑘 for all 𝑘 ≥ 𝑘0. Similarly, 𝑤𝑘 ≤ 𝑐+𝑘 for some 𝑐+ < ∞ and all 𝑘 ≥ 𝑘0. Thus 𝑐−𝑘 ≤ 𝑤𝑘 ≤ 𝑐+𝑘 for

𝑘 ≥ 𝑘0, and 1 − 𝜌𝑘 = 2𝑤−2
𝑘

= 𝑂 (𝑘−2). Write Θ𝑘 = Θ(𝑘 ) (𝜌1) and rewrite (84) as

Θ𝑘 = 𝑏𝑘 + 𝑎𝑘Θ𝑘−1, 𝑎𝑘 =
1
𝑟
¤𝑠(𝜌𝑘), 𝑏𝑘 = 1 + 1

𝑟
𝑠(𝜌𝑘).

For the limiting constant-coefficient recursion (corresponding to 𝜌𝑘 → 1), we have 𝑎 = 1
𝑟
¤𝑠(1) = 1

2𝑟 , 𝑏 = 1+ 1
𝑟
𝑠(1) = 1+ 1

2𝑟 ,
hence Θ★(𝑟) = 𝑏/(1 − 𝑎) = (2𝑟 + 1)/(2𝑟 − 1). Set 𝑒𝑘 = Θ𝑘 − Θ★(𝑟). Then

𝑒𝑘 = 𝑎𝑘𝑒𝑘−1 + (𝑏𝑘 − 𝑏) + (𝑎𝑘 − 𝑎)Θ★(𝑟).
Using (83) and 𝑤𝑘 ≥ 𝑐−𝑘 for 𝑘 ≥ 𝑘0, there exists 𝐶 < ∞ such that for all 𝑘 ≥ 𝑘0,

|𝑎𝑘 − 𝑎 | =
1
𝑟

��� ¤𝑠(𝜌𝑘) − 1
2

��� ≤ 𝐶

𝑟

1
𝑤𝑘

≤ 𝐶

𝑟

1
𝑘
,

|𝑏𝑘 − 𝑏 | =
1
𝑟

���𝑠(𝜌𝑘) − 1
2

��� ≤ 𝐶

𝑟

1
𝑤2
𝑘

≤ 𝐶

𝑟

1
𝑘2 .

39



Moreover 0 ≤ 𝑎𝑘 ≤ 𝑎 = 1/(2𝑟) < 1. Hence for all 𝑘 ≥ 𝑘0,

|𝑒𝑘 | ≤ 𝑎 |𝑒𝑘−1 | +
𝐶′

𝑘

for some 𝐶′ < ∞. A standard induction (discrete Grönwall) yields |𝑒𝑘 | ≤ 𝐶Θ/𝑘 for all 𝑘 ≥ 1; in particular 𝑒𝑘 → 0 and
Θ𝑘 → Θ★(𝑟). To make the 𝑂 (1/𝑘) rate explicit, fix 𝑘 ≥ 𝑘0 and iterate the one-step inequality:

|𝑒𝑘 | ≤ 𝑎𝑘−𝑘0 |𝑒𝑘0 | +
𝑘∑︁

𝑗=𝑘0+1
𝑎𝑘− 𝑗

𝐶′

𝑗
.

Since 𝑗 ≥ 𝑘0 + 1 implies 1/ 𝑗 ≤ 1/𝑘0 and also 𝑗 ≤ 𝑘 implies 1/ 𝑗 ≤ 1/𝑘 , we can bound
𝑘∑︁

𝑗=𝑘0+1
𝑎𝑘− 𝑗

1
𝑗
≤ 1
𝑘

𝑘−𝑘0−1∑︁
𝑡=0

𝑎𝑡 ≤ 1
𝑘
· 1

1 − 𝑎 .

Also 𝑎𝑘−𝑘0 |𝑒𝑘0 | ≤ |𝑒𝑘0 | ≤ (𝑘0 |𝑒𝑘0 |)/𝑘 . Therefore for all 𝑘 ≥ 𝑘0,

|𝑒𝑘 | ≤
1
𝑘

(
𝑘0 |𝑒𝑘0 | +

𝐶′

1 − 𝑎

)
.

Absorbing the finitely many values 𝑘 < 𝑘0 into the constant gives |𝑒𝑘 | ≤ 𝐶Θ/𝑘 for all 𝑘 ≥ 1, as claimed. Let

Θ
diag
𝑘

= Θ(𝑘 ) (1) and Θoff
𝑘

= Θ(𝑘 ) (𝜌1), and set Δ𝑘 = Θ
diag
𝑘

− Θoff
𝑘

≥ 0. The diagonal recursion is Θdiag
𝑘

= 𝑏 + 𝑎Θdiag
𝑘−1,

while the off-diagonal recursion is Θoff
𝑘

= 𝑏𝑘 + 𝑎𝑘Θoff
𝑘−1. Subtracting gives the exact identity

Δ𝑘 := 𝑎 Δ𝑘−1 + (𝑎 − 𝑎𝑘)Θoff
𝑘−1 + (𝑏 − 𝑏𝑘).

For 𝑘 large, Θoff
𝑘−1 is bounded above and below by positive constants (since Θoff

𝑘
→ Θ★(𝑟) ∈ (1,∞)). Also by (83) and

𝑤𝑘 ≍ 𝑘 ,

𝑎 − 𝑎𝑘 =
1
𝑟

(1
2
− ¤𝑠(𝜌𝑘)

)
= Θ

( 1
𝑟 𝑤𝑘

)
= Θ

( 1
𝑟 𝑘

)
, 𝑏 − 𝑏𝑘 =

1
𝑟

(1
2
− 𝑠(𝜌𝑘)

)
= 𝑂

( 1
𝑟 𝑤2

𝑘

)
= 𝑂

( 1
𝑟 𝑘2

)
.

Thus there exist 𝑘1 and constants 0 < 𝑐 < 𝐶 < ∞ such that for all 𝑘 ≥ 𝑘1,

𝑎 Δ𝑘−1 +
𝑐

𝑟 𝑘
≤ Δ𝑘 ≤ 𝑎 Δ𝑘−1 +

𝐶

𝑟 𝑘
.

Iterating these comparison recursions yields 𝑐Δ/(𝑟𝑘) ≤ Δ𝑘 ≤ 𝐶Δ/(𝑟𝑘) for all 𝑘 ≥ 𝑘1, completing the proof. □

Proof sketch.

D.8 Remark: proxy lower bounds vs positivity (smallest eigenvalue)

Notation. Let 𝐾 denote the empirical NTK Gram matrix at initialization, with entries 𝐾𝑖 𝑗 = ⟨∇𝜃 𝑓 (𝑥𝑖),∇𝜃 𝑓 (𝑥 𝑗 )⟩.
Let 𝐾 denote the mean (deterministic) kernel Gram matrix with entries 𝐾𝑖 𝑗 = E[𝐾𝑖 𝑗 ]. The centered spectrum refers to
the restriction of these matrices to the subspace 1⊥ of vectors orthogonal to the constant vector 1; we write 𝐾 |1⊥ and
𝐾 |1⊥ for these restrictions.

Remark D.1 (Can the smallest eigenvalue become negative?). No: 𝐾 is a Gram matrix of gradients, hence
𝐾 ⪰ 0 deterministically and all its eigenvalues are ≥ 0. Restricting to the mean-zero subspace preserves positive
semidefiniteness: for any 𝑣 ⊥ 1, one has 𝑣⊤𝐾𝑣 ≥ 0, so 𝐾 |1⊥ ⪰ 0.
What can happen is that a deterministic proxy lower bound on the centered eigenvalue scale is smaller than the
magnitude of random fluctuations. Weyl’s inequality gives

𝜆min
(
𝐾 |1⊥

)
≥ 𝜆min

(
𝐾 |1⊥

)
− ∥𝐾 − 𝐾 ∥2,

so if ∥𝐾 − 𝐾 ∥2 dominates the deterministic scale of 𝜆min (𝐾 |1⊥ ), the bound becomes vacuous (it may be negative),
but the true eigenvalue still satisfies 𝜆min (𝐾 |1⊥ ) ≥ 0. Thus, the relevant concern is not “going below zero” but rather
“being driven close to zero” when the 1/(𝑟𝐿) signal is swamped by noise.
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D.9 Remark: infinite-depth limit after centering
Remark D.2 (Infinite-depth limit: existence and degeneracy after centering). The correlation recursion satisfies
1 − 𝜌𝑘 = 𝑂 (𝑘−2) as in full-width MLPs at the EOC [?, ?], so deep features become increasingly aligned. For the
mean RF-LR NTK recursion (84), Theorem 4.1 implies that for any fixed 𝜌1 ∈ (−1, 1),

Θ(𝐿) (𝜌1) → Θ★(𝑟) and Θ(𝐿) (1) → Θ★(𝑟),

so the entrywise infinite-depth limit of the (mean) Gram matrix is a constant kernel: 𝐾 (𝐿) → Θ★(𝑟) 11⊤.
Consequently, after centering (restricting to the orthogonal complement of the constant mode), the relevant part of
𝐾 (𝐿) tends to zero and the spectrum collapses. In particular, a non-degenerate deep limit on 1⊥ can only hold under
a joint scaling (e.g. 𝑟 growing with 𝐿) or after an explicit rescaling of the centered operator (equivalently, rescaling
time/learning rate in kernel gradient descent).

E Experiments

This section presents numerical illustrations. All scripts are headless (matplotlib “Agg” backend). Setup: finite-width
NTK scripts use a 3-layer (2 ReLU) RF-LR architecture with hidden width 12000–20000 so that finite-width variance
is small; deterministic proxy scripts iterate the recursion to large 𝑘 (e.g. 𝑘max = 4000 or 𝐿 = 200). Bottleneck rank 𝑟 is
swept as indicated; 𝑛 is the number of inputs, 𝑑 the input dimension. Scripts in the first subsection are deterministic;
the rest are finite-width Monte Carlo (they illustrate fluctuation scales and do not constitute proofs).

E.1 Correlation alignment and equicorrelated spectrum (Theorem 4.1, Corollary 4.1)

What is computed. Deterministic ReLU EOC correlation recursion 𝜌𝑘 = 𝜚(𝜌𝑘−1) and proxy NTK recursion; diagnostics
𝑤𝑘/𝑘 , 𝑘 |Θ(𝑘 ) −Θ★(𝑟) |, 𝑟𝑘 (Θ(𝑘 )

diag −Θ
(𝑘 )
off ). For the equicorrelated model, eigenvalues 𝜆1 = Θ(𝐿) (1) + (𝑛 − 1)Θ(𝐿) (𝜌0),

𝜆⊥ = Θ(𝐿) (1) − Θ(𝐿) (𝜌0) (e.g. 𝑛 = 64, 𝜌0 = 0).

Figure 2: Three panels (Theorem 4.1): (1) 𝑤𝑘/𝑘 vs 𝑘 (stabilizes); (2) 𝑘 |Θ(𝑘 ) (𝜌1) − Θ★(𝑟) | vs 𝑘 (bounded); (3)
𝑟𝑘 (Θ(𝑘 )

diag − Θ
(𝑘 )
off ) vs 𝑘 (stabilizes). One curve per rank 𝑟 ∈ {5, 10, 20, 50}.
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Figure 3: Correlation alignment along depth: 1 − 𝜌𝑘 = 𝑂 (𝑘−2) (log–log) as in Theorem 4.1.

Figure 4: Equicorrelated spectrum (Corollary 4.1): (1) spike saturation 𝐿 |𝜆1/𝑛 − Θ★(𝑟) |/𝑛 vs 𝐿 (log–log); (2) gap
scaling 𝑟𝐿𝜆⊥ vs 𝐿 (log–log). One curve per 𝑟 .

E.2 Product decay and entry variance

What is computed. Left: Deterministic product
∏𝐿
𝑘=ℓ+1

¤Σ (𝑘 )/𝑟 vs 𝑗 = 𝐿 − ℓ (exponential-in-depth suppression,
Eq. 7). Right: Monte Carlo Var[𝐾 (−1, 1)] vs 𝑟 over 100 initializations (3-layer RF-LR, width 16000); rank-driven
concentration (Section 5).

Figure 5: *
Product decay vs depth; bound (𝑐0/𝑟) 𝑗 .

Figure 6: *
Entry variance vs 𝑟; ∝ 1/𝑟 baseline.

Figure 7: Left: depth suppression (deterministic). Right: entry-wise variance (finite-width Monte Carlo).
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E.3 Smallest eigenvalue (finite-width Monte Carlo)

What is computed. Fixed random dataset on the unit sphere (𝑛 = 64, 𝑑 = 16); empirical Gram 𝐾 , centered 𝐾𝑐 = 𝐻𝐾𝐻;
𝜆+min (𝐾𝑐) over 50 initializations, 𝑟 ∈ {5, 10, 20, 50, 100, 200, 500, 1000}. Illustrates smallest eigenvalue driven close to
0 by finite-width noise (Appendix D.1).

Figure 8: *
Histograms of 𝜆+min (𝐻𝐾𝐻); matrix stays PSD.

Figure 9: *
Mean 𝜆+min (𝐻𝐾𝐻) vs 𝑟; better conditioning with 𝑟 .

Figure 10: Distribution and mean of smallest positive centered eigenvalue vs 𝑟 .

E.4 Condition number 𝜅 (proxy vs empirical; equicorrelated, high-dim, non-equicorrelated)

What is computed. Condition number on 1⊥ vs 𝑟. Equicorrelated: 𝑛 = 32, 𝑑 = 64, 𝜌0 = 0; proxy 𝜅⊥ = 1
(Corollary 4.1); empirical mean ± std over 40 initializations (Theorem 4.2). High-dim spherical: i.i.d. uniform on
𝑆𝑑−1, 𝑑 = 256, 128; 𝜅⊥ ≈ 1. Non-equicorrelated: Clustered design (4 clusters), 𝑛 = 48, 𝑑 = 64, 30 trials; 𝜅 ≥ Ω(𝑟 · 𝐿)
(Proposition 4.1).

Figure 11: *
Equicorrelated: proxy 1; empirical concentrates.

Figure 12: *
High-dim spherical: 𝜅⊥ ≈ 1.

Figure 13: Condition number on 1⊥: equicorrelated and high-dimensional spherical data.
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E.5 Non-equicorrelated 𝜅 and kernel regression risk

Left: Condition number vs 𝑟 for clustered (non-equicorrelated) data; 𝜅 need not approach 1 (Proposition 4.1). Right:
Kernel ridge regression with the empirical RF-LR NTK: fix a target on the sphere, 64 train / 256 test, 𝑑 = 32, 20
trials; as 𝑟 grows the Gram concentrates toward the proxy, so test MSE and its variance across trials decrease, linking
conditioning and concentration to downstream risk.

Figure 14: *
𝜅 vs 𝑟, non-equicorrelated; 𝜅 ≥ Ω(𝑟 · 𝐿).

Figure 15: *
Test MSE vs 𝑟; mean risk and std drop with 𝑟 .

Figure 16: Left: 𝜅 vs 𝑟 for clustered (non-equicorrelated) data; 𝜅 need not approach 1 (Proposition 4.1). Right: Test
MSE of kernel ridge regression vs 𝑟; as 𝑟 grows and the Gram concentrates toward the proxy, mean risk decreases and
std across trials drops.

E.6 RKHS Puiseux exponent vs depth (Corollary 5.2, extension to 𝐿 ≥ 4)

For zonal kernels on the sphere, the RKHS is controlled by the Puiseux exponent 𝛾 at the endpoint 𝜌 = 1: if
𝐾 (1− 𝑡) −𝐾 (1) ∼ 𝑐 · 𝑡𝛾 for small 𝑡, then 𝛾 determines the RKHS [17]. The paper proves 𝛾 = 1/2 for the mean three-layer
RF-LR kernel (same as shallow ReLU); extension to 𝐿 ≥ 4 is open. We estimate 𝛾(𝐿) for the deterministic proxy
Θ(𝐿) (𝜌) via log–log regression of the gap Θ(𝐿) (1) −Θ(𝐿) (1− 𝑡) vs 𝑡. For 𝐿 ∈ {2, 3, 4, 5, 6} we obtain 𝛾(𝐿) ≈ 0.52–0.55
with 𝑅2 > 0.999, suggesting the proxy’s endpoint behavior is consistent with RKHS equivalence extending to 𝐿 ≥ 4.
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Figure 17: RKHS Puiseux exponent vs depth. Left: estimated 𝛾(𝐿) vs 𝐿; reference 𝛾 = 1/2 (ReLU RKHS). Right:
log–log gap vs 𝑡 for 𝐿 = 2 and 𝐿 = 6. The proxy kernel exhibits 𝛾 ≈ 1/2 for 𝐿 ≥ 2, consistent with RKHS equivalence
extending beyond three layers.

MLP at EOC [?] RF-LR (this work)
Trainable all weight layers readouts 𝐴(ℓ ) , biases 𝑐 (ℓ ) ; frozen 𝑤 (ℓ )

Scaling depth 𝐿, Δ𝜙 depth 𝐿, bottleneck 𝑟
Kernel magnitude uncentered scale can grow with 𝐿 mean recursion saturates in 𝐿 (Thm. 4.1)
Centered scale correlation propagation gap Θ(𝐿) (1) − Θ(𝐿) (𝜌) ≍ 1/(𝑟𝐿) (Thm. 4.1)
Table 1: Depth/rank effects in the kernel regime. MLP: fully trained behavior; RF-LR: explicit 1/𝑟 bottleneck, saturation
and early-layer suppression.
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