Low-RANK NEURAL NETWORK STRUCTURE IS SUFFICIENT FOR
GLoOBAL
CONVERGENCE: A MEAN-FIELD PERSPECTIVE

Janis (Heran) Aiad* Haizhao Yang?
Shijun Zhang?
! Ecole Polytechnique, Ecole Normale Supérieure Paris-Saclay
2 University of Maryland, Department of Mathematics; Department of Computer Science
3 The Hong Kong Polytechnic University

ABSTRACT

This work studies the training dynamics of low-rank neural networks with frozen random features
in the mean-field regime. When the mean-field dynamics converges, the limit is shown to be a
global minimizer; this holds for gradient-based training under standard independent and identically
distributed initialization, despite low-rank constraints and nonconvex loss functions. By explicitly
incorporating low-rank structure into the network architecture, a tractable mean-field evolution system
is derived. Its well-posedness is established, and it is shown that with frozen random features LO,
frozen mixing matrices L(¢), and only the channel weights w, trained, the universal approximation
property is preserved while the learning dynamics are simplified. The analysis identifies a rank-
channel feature learning mechanism, in which different low-rank channels specialize to distinct spatial
locations and progressively capture higher-frequency components. This mechanism explains both the
persistence of global convergence and the emergence of hierarchical frequency learning. Numerical
experiments demonstrate that low-rank networks achieve faster convergence and higher accuracy on
highly oscillatory targets, while using substantially fewer parameters than full-rank networks.
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1 Introduction

Neural networks have achieved remarkable success across a wide range of applications, including computer vision,
natural language processing, scientific computing, and data-driven modeling. These advances have reshaped modern
machine learning practice and enabled solutions to problems that were previously considered intractable. Despite
this empirical success, theoretical understanding of neural network training remains limited. A central difficulty
lies in the highly non-convex nature of the learning landscape. For most architectures and problem settings, the
optimization process is poorly understood: it is generally unclear why gradient-based methods succeed in practice, how
representations evolve during training, or under what conditions convergence can be guaranteed. As a result, much of
current understanding relies on empirical observations rather than rigorous analysis.
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Figure 1: Architecture of a three-layer low-rank random feature network. The first layer consists of frozen random
features, the second layer employs a low-rank mixing matrix L of rank » << N, and the third layer contains trainable
weights wy. The red dashed box highlights the low-rank bottleneck that reduces dimensionality from N to r channels.

However, full-rank models are heavily over-parameterized. The number of trainable parameters and the associated
computational cost can be far larger than what is effectively needed to represent the target function. From both
computational and modeling perspectives, it is natural to seek more structured and efficient alternatives. Low-rank neural
networks offer such a possibility by reducing parameter redundancy and computation while retaining expressive power.
As illustrated in Figure ??, low-rank models achieve comparable or better training loss with 99% fewer parameters than
full-rank networks.

This raises a fundamental question: is low rank all we need for global convergence ? Low-rank networks factorize
weights as W = LRT with r < min{n, m}, substantially reducing parameters; when such factorizations replace full-rank
matrices, can gradient-based training still converge to a global minimizer, or is full rank essential? It is unclear whether
the favorable optimization and convergence properties of full-rank mean-field analyses extend to this setting. We
therefore conduct a systematic theoretical investigation of low-rank neural networks from optimization and representation
learning: This question is resolved in the present work, as summarized by the following informal theorem.

Theorem 1.1 ((informal) Convergence to a global minimizer for any depth with i.i.d. init.). For any depth L > 2,
low-rank random feature networks with standard initialization and non-negative loss function, and if the weights in
all layers (wi,...,wp_1) converge ast — oo, then the limit is a global minimizer of the population loss.

Theorem ?? is an informal statement of the main convergence result proved rigorously in Theorem ??. Beyond global
convergence, the analysis further establishes a hierarchical frequency learning phenomenon for low-rank neural networks,
revealing how learned representations are organized across different low-rank channels. The main contributions of this
work are summarized as follows.

* Global convergence under low-rank constraints (Theorem ??). It is shown that when the dynamics of
low-rank random feature neural networks converges, it converges only to global minimizers of the population
loss, for any depth L > 2 under standard independent and identically distributed initialization. Unlike previous
full-rank analyses, the result requires no special or ad-hoc initialization.

* Mean-field feature learning (Theorem ??). A theoretical characterization of feature learning mechanism
is established. A rigorously analyzed toy model demonstrates that each low-rank channel learns a spatially
localized feature at a distinct location. The spatial features distribution (Figure ??) is an important diagnostic
for this mechanism and is strongly confirmed through numerical experiments.

On MNIST, low-rank networks with frozen random features reach ~97% test accuracy with 13k=31k trainable parameters,
while matching a ReLU MLP at ~98% when all parameters are trained (Table 2?).



Table 1: MNIST: MLP baseline vs low-rank vs random features; LR = low-rank, RF = frozen random features.

Model Rank Trainable Test acc (%)

MLP - 669,706  98.39
RF-LR 5 7,695 93.72
RF-LR 10 10,260 96.24
RF-LR 15 12,825 96.97
RF-LR 25 17,955 97.00
RF-LR 50 30,780 97.01
LR Only 32 440,362  98.30

Numerical experiments confirm that this theoretical structure translates into practical benefits. On highly oscillatory
function, low-rank networks achieve substantially faster convergence and significantly higher accuracy, reaching MSE
~ 107%, compared to approximately 107> for full rank networks. At the same time, the number of trainable
parameters is reduced by 95%-99% These results suggest a fundamental insight into the loss landscape: appropriately
structured low-rank parameterizations can improve optimization behavior, rather than merely restricting expressivity.

The remainder of the paper is organized as follows. Section ?? reviews related work. Section ?? presents the main
theoretical results and proof ideas. Section ?? studies hierarchical frequency learning and channel specialization.
Section ?? reports numerical experiments, and Section ?? concludes.

1.1 Related work

Mean-Field Theory for Neural Networks Mean-field theory rigorously analyzes neural network training dynamics
in the large-width limit (typically N > 1000 neurons per layer). In this regime, the empirical distribution of
parameters evolves deterministically, leading to powerful tools for understanding optimization and generalization.
Foundational results by [?], [?], [?], and [?] established global convergence for two-layer networks under convex loss
assumptions—crucially leveraging convexity to guarantee that all stationary points are global minimizers.

Progress beyond the convex case has accelerated. [?] proved global convergence for three-layer networks without
assuming convex loss functions. Mean-field analyses of residual networks [?] and multilayer networks [?] further clarify
when global optima arise from stationary points, but these results so far apply only to full-rank networks. Whether such
convergence persists in computationally efficient, low-rank architectures remained open.

We address this gap: we train only the right factor R, keeping L frozen as random features—avoiding both RGD and
the full-rank mean-field collapse to one parameter per intermediate layer under i.i.d. initialization [?]. By leveraging
frozen random features, we prove that channel feature learning (in which r independent channels capture hierarchical
frequency structure) leads to both global convergence and practical representational learning.

The present analysis extends the framework of Chizat and Bach [?] (Theorem 2: if the initial support spans R%*! and
Y is positively 2-homogeneous, any weak limit of the Wasserstein gradient flow is a global minimizer) to low-rank,
multi-layer networks. We build on [?, ?].

A key theoretical advance is the elimination of ad-hoc initialization. For standard fully-connected or convolutional
networks, [?] prove that under i.i.d. initialization and constant initial biases the mean-field limit collapses: at each
intermediate layer the weight dynamics reduces to a single deterministic translation parameter (independent of neuronal
indices). To obtain global convergence they therefore require an ad-hoc initialization that avoids this degeneracy. We
do less by way of initialization—we impose an architectural restriction (frozen random features and low-rank layers)
and assume only standard i.i.d. initialization—and prove more: frozen random features ensure supp(L°(C;)) = R?
throughout training, so the dynamics does not collapse and standard i.i.d. suffices; when the dynamics converges, the
limit is a global minimizer for arbitrary depth L > 2. See Remark ?? and [?] for the full-rank setting.

Low-Rank and Random Features Our RF-LR architecture is based on [?]. Low-rank methods such as LoRA [?] are
widely used; most theory focuses on expressivity rather than training dynamics. [?] study end-to-end low-rank training
via reparameterization gradient descent (RGD); we train only post-activation parameters and freeze the other factor as
random features. That choice yields convergence only to global minimizers and clarifies channel feature learning: each
channel specializes to distinct spatial and frequency patterns.

Random features provide a bridge between neural networks and kernel methods. In the mean-field width limit, fixing the
first layer as random features connects the network to kernel methods governed by the neural tangent kernel (NTK) [?],
offering tractable analyses of optimization and generalization. Our architecture embraces this by freezing the first-layer



weights, so that low-rank mixing layers can learn task-specific representations atop a fixed random feature basis. Recent
work establishes that low-rank structure suffices for the MLP NTK [?], while our results extend this to mean-field
dynamics and global convergence. Together, these advances show that, both in NTK and mean-field regimes, low-rank
networks can match the optimization guarantees of their full-rank counterparts.

2 Main Results and Proof Ideas

2.1 Low-Rank Random Feature Architecture

We consider a low-rank random feature (RF-LR) network architecture. Let (9 (x) = x € R%. Forlayers £ = 1,..., L:
1 &
w0 (x)=— Z w0 we (L(.[)T h([_l)(x) + bm) +cy¢, (1)
ng 4" j j
=

where n, is the width of layer ¢, w}e) € R are trainable coeflicient vectors, Lﬁ.[) € R¥%-1 and b;.(';) € R are frozen

random features (i.i.d. uniform or Gaussian), and c is a trainable scalar output bias. The 1/n, scaling ensures a
well-defined mean-field width limit. In the mean-field width limit (typically N > 1000 neurons per layer), where N
denotes the width of each layer, under the mean-field parameterization with i.i.d. initialization (uniform or Gaussian),
the empirical distribution of weights converges to a deterministic measure-valued evolution.

Training policy: w(¢) and ¢, are trained; L) and b(*) are frozen random draws. In the mean-field formulation, biases
b;.[) are encoded by augmenting the input data with a constant component (adding 1 to the input vector).

2.2 Mean-Field Forward Equations

We use the neuronal embedding framework of [?]: each neuron is indexed by a label C lying in a probability space
(countable or uncountable), which we specify when sampling or constructing the network. In the finite-width case, C
corresponds to discrete neuron indices; in the mean-field limit, C runs over the support of a measure, and expectations
c[-] replace empirical averages over neurons.

Definition. We define the mean-field forward pass layer by layer. The frozen first-layer feature map is L°(c;) € R%;
we specify the law of L(C;) when sampling the network. In layers i > 2, the low-rank structure is given by a frozen

mixing matrix L (entries L, g, or L( ) . for intermediate layers), also fixed random features drawn at initialization; we
call it mixing in those layers. All other 1ayer—w1se quantities are defined exactly as follows.
« Input (i = 0): h°(X) = X € R%; no neuronal index.
« Hidden (i = 1,...,L — 1): Index C;. Ati = 1: frozen L%(cy); Hy = LO(C)X; £\ =¢, [w1 ¢1(H))]. For
i 22 Hy= %, L 7 with £ =, [wio1 @io1(Hio1)]. Activation g; (H;).
* Output (i = L): $=¢, , [wr-1 ¢r-1(Hr-1)].

2.3 Mean-Field Backward Equations (ODEs)
The mean-field ODE system (backward equations) for the weights takes the form, for all layersi =1,...,L —1:
dwi(t,c1, k) = =&1(1) z[dr ¢1(L°X) B,

Orwi(t,ci) = =&i(t) z[Di i (Hi(t, cis X, W))],

where z[-] denotes expectation over Z = (X,Y); dp(Z; W(t)) = 0sZ (Y, $(X; W(2))) is the loss derivative; & (¢) > 0
are the learning-rate schedules. In (??), Dy _y = dp;fori < L — 2, D; is the back-propagated pre-activation gradient at

Hi [?]

@

D; = ¢;(H,) Z Wi Gy [Dis1 L(lt})k]
k 3)
Dp_y=dpwr_1¢;_(Hp_1).

The channel-wise backpropagated signals are

B (X, W) =c, [LE) ) (He (1, Cos X, W) we (£, Cr)].



2.4 Assumptions

The applicability of our results depends crucially on the following assumptions, which we state explicitly in Appendix ??
and are satisfied by standard MLP architectures

The main assumptions are: Bounded Activations and Mixing (Assumption ??), Sub-Gaussian Initialization (Assump-
tion ??), Data Distribution and Loss Regularity (Assumption ??), Diversity of Random Features (Assumption ??),
Non-Degeneracy (Assumption ??), and Training convergence to limit point (Assumption ??). The Non-Degeneracy
assumption requires that the initial loss is better than the trivial zero predictor, ensuring the network learns a non-trivial
solution. The Convergence to Limit Point assumption states that training reaches a limit point, which is a natural
condition for analyzing convergence.

These assumptions are satisfied by Leaky ReLU or sigmoid (or tanh) networks on bounded data with standard
initialization (Gaussian/Xavier): those activations have ¢’ bounded and bounded away from zero, and bounded inputs
plus Gaussian/Xavier fulfill the remaining regularity, sub-Gaussian, and non-degeneracy conditions; for ReLU, the same
holds with high probability in » (Appendix ??).

2.5 Mean-Field ODEs are well posed

We establish well-posedness of the mean-field ODE system (2?) by adapting the proof from [?] to account for the
low-rank structure.

Theorem 2.1 (Well-posedness of mean-field ODEs). Under Bounded Activations and Mixing (Assumption ??),
Sub-Gaussian Initialization (Assumption ??), Data Distribution and Loss Regularity (Assumption ??), and Diversity
of Random Features (Assumption ??), there exists a unique solution to the mean-field ODE system (??) ont € [0, o).

Proof sketch. We first states the bi-Lipschitz property of Hy and ¢, (Hg) in W (Lemma ??, Appendix 2?): |H(W’) —
Hy (W] and |@¢ (He (W’)) — @7 (He (W”))| are bounded by K| L) llo,1 < rK times weight differences. This is the
simple but key adaptation to the low-rank case. From this, we adapt and introduce weight-space Orlicz sub-gaussian
norms accounting for the r channels (max<x<, over channel index k, see Appendix ??), update K(¢) with a factor
(1+rK)'/?, establish sub-Gaussian a priori bounds with r-factors, and show the solution operator F is contractive in
these spaces; Banach fixed point yields existence and uniqueness. Details in Appendix ??. O

2.6 Global convergence

Frozen random features with full support supp(L°(C;)) = R¥ ensure that {¢;((L%(c1),-)) : ¢1 € Q;} has dense span
in L?(Px) when ¢ is non-polynomial (e.g. Leaky ReLU or sigmoid); ¢; (af + b) for random a, b then forms a dense
span. This property is maintained throughout training because L°(C}) are frozen. For well-posedness (Theorem 2?),
each Hy (t, cg; X, W) bi-Lipschitz in W is sufficient and equivalent to ¢, Lipschitz; it is the only thing that matters. After
defining norms, we update K (¢) with a factor (1 +rK) 1/2. the solution operator F', a priori bounds, and the contraction
argument then proceed as in the full-rank framework [?].

Theorem 2.2 (RF-LR training only converges to global minimizers). Under all assumptions from Bounded
Activations and Mixing (Assumption ??) through Convergence to Limit Point (Assumption ??), and the loss
condition in Data Distribution and Loss Regularity (Assumption ??) (0L = 0 = L = 0), if the mean-field
dynamics for low-rank random feature networks converges, then it is to a global minimizer of the population loss:
lim; 0o W(t) = W* where W* minimizes &. For any depth L > 2, this holds with standard i.i.d. initialization.

Equivalently, any limit point of the mean-field dynamics is a global minimizer of the population loss under the loss
condition in Assumption ??.

High-level proof idea (improving [?], Sec. 6.2.1). At a limit point W, the gradient-flow ODE has zero time derivative.
For the top layer (and, by backprop, at each layer), this yields z [upstream X local] = 0 over the support of the layer’s
neuron measure. The crucial step: if the first-layer features {¢; ({0, -)) : 6 € supp(feature measure) } have dense span in
L*(Px), then one deduces [05Z(Y,$(X;W)) | X =x] =0 for Px-a.e. x. Under the loss condition in Assumption ?2,
E[6,L(Y,u)|X = x] = 0implies E[L(Y,u)|X =x] =0, s0 Z(W) =0 and W is a global minimizer.

In [?], the first-layer weights w are trained, so supp(w;(U;)) = R¢ at the limit may fail (e.g., solutions may become
sparse or concentrated). Their proof therefore relies on a homotopy argument to show that supp(w (¢, U;)) = R? is
preserved for all finite # > 0, so the limit retains enough richness.
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rank = 10) vs full-rank (r = 1024) on y = cos(27z), © € [—1, 1], 3 layers, width 1024, n = 5000, batch=4, SGD Ir 0.01 with rec

(momentum 7 € {O7 0.3,0.6, 0.7}) and one full-rank (7 =0). Red bars: SGD Ir reductions for = 0.

Figure 2: Low-rank (rank r=10) vs full-rank (r=1024) on y = cos(2nx), x € [-1, 1], 3 layers, width 1024, n=5000,
batch=4, SGD Ir 0.01 with red-bar decay. (momentum 5 € {0, 0.3,0.6,0.7}) and one full-rank (7=0). Red bars: SGD Ir
reductions for 7=0. Low-rank uses 99% fewer parameters and vanilla SGD performs best.

We freeze the feature maps L°(C;) for all layers i; they are not trained, so supp(L°(C;)) = R¢ for every i and all 7,
and {g; ((L°(c;), ) : ¢; € Q;} has dense span in L?>(Pp,_,) for every layer. Thus we can apply the global-optimality
argument of [?] without the homotopy step: at a limit point, zero derivative plus dense span at each layer gives
7z[05Z | X = x] = 0 a.e. and hence a global minimizer. The low-rank form (H; = ;. L¢, « fx, etc.) only changes
upstream and local terms; the gradient-flow logic is unchanged. For L > 3, the layer-by-layer argument works by virtue
of the frozen L°. Unlike full-rank L > 3, which requires ad-hoc init to avoid collapse, we need only standard i.i.d. init
(Remark ??).

Remark 2.1 (Avoiding ad-hoc initialization). Full-rank L > 3 needs ad-hoc init in [?] (else intermediate layers
collapse). Frozen L° keeps supp(L°(C})) = R4, so standard i.i.d. suffices and any limit is a global minimizer.

2.7 Quantitative Guarantees

We provide a quantitative approximation theorem that bounds the error between finite-width networks and the mean-field
limit. The detailed proof are provided in Appendix ??; here we summarize the key result.

Theorem 2.3 (Finite-width approximation error bound). Given a family nit of initialization laws and a tuple {n, n}
that is in the index set of Init, perform the coupling procedure for the low-rank architecture as described in Section ??.
Fix a terminal time T € €Nso. Under Assumptions ??, ?? (see Appendix ??), and the low-rank structure with mixing
matrix L satisfying ||L||e,1 < 7K, for € < 1, we have with probability at least 1 — 20,

9T(W, W) < Cexp : Cwidth ' Clog’

where chp = eKT(HrK)’ Cyiam = l/Vnmin + \/E, Clog = \/IOg(3(T+ 1)"12113x/6+e)» With Rpmin = min{ny, na},
Nmax = max{ni,n2}, Kr = K(1 +TX), and the factor (1 + rK) accounts for the low-rank structure through
IL]leo,1 < 7K.

Training in practice. The theorem (Appendix ??) links W(|¢/€]) to W(¢) with error O (1/+/fimin + V€), independent
of d; proof in Appendix. The factor (1 + rK) in the Gronwall constant ¢X7(1+7K) arises in the ODE drift bounds (from



the r channels and ||L||»,1 < 7K) and is then exponentiated by Gronwall; vs. full-rank [?] one has eKr(4rK) instead of
eK7 . Worst-case, the bound is exponential in 7K ; in practice, channel specialization often restricts to a subset and yields
faster convergence (future work, Section ??).

3 Feature Learning

The low-rank structure enables channel feature learning where different channels learn different spatial-frequency
features. In particular, each channel learns a spike at a different spatial value (localization): e.g. channel k& dominates
near some x; while others remain small there. Empirically, channels also separate by frequency—lower frequencies are
captured first, higher ones progressively—so that the » channels jointly provide both spatial localization and frequency
separation. Theorem ?? below provides a rigorous, conditional characterization of how channels establish and maintain
dominance (when the stated hypothesis holds on an interval ), explaining the feature learning in practice.
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Figure 3: Channel spike learning (Theorem ??). Functions fi(x) (blue) and f,(x) (red) at ¢y, ¢y + At, and ¢;. f) has a
spike at xo that becomes more pronounced over time, while f, has no spike.

3.1 Mechanism of Spike Learning

The log-ratio growth in Theorem ?? arises from a self-reinforcing dominance loop. The evolution 9, fi (¢,x) =
—é1(t) z=(x.v)[dL(Z; W(1)) B (t; X) K,y (x, X)] is an integral over the data distribution, where k € {1,...,r} is the
channel index and K, (x, X) is the kernel. When channel k dominates at xo,

,
Hy = Z Leyjfi = Ley i+ Z Ley.jfis
Jj=1 " j#k
large —_——
small
so the pre-activation and hence ¢/, (H3) (bounded away from zero under Assumption ??) are effectively driven by that
channel. The backpropagated signal By (t; X) =c, [Lc,k w2(t, C2) ¢, (Ha(t, C2; X))] is a mixture over the second
layer. The precise signs of L., x or wa(#, ¢2) need not matter: once a channel dominates, the activation derivative ¢/
modulates the contribution (e.g. by half-space for Sigmoid/ReLU/Leaky ReLU), w, evolves on that set via the mean-field
wy-ODE, and the dynamics create an emergent sign-coherence rather than requiring it a priori. If the activation (gate) is
correlated with a channel, that correlation amplifies: the channel gets a larger By, hence a larger 0, f%, so the channel and
the gate become even more correlated. Under sign-coherence (By,; has the same sign as fi), the integral contribution
from the dominant channel is larger, yielding a single self-reinforcing loop: larger dominance — larger By — larger
0, fx — further amplified dominance. Theorem ?? shows that when the conditions (i)—(iii) in its hypothesis hold on an
interval /, this loop implies d; R12 > 0 and thus that dominance cannot be lost on /; see Appendix ??.

3.2 Toy model with spike feature learning

The full mean-field system for discrete regression in Spatial-Fourier space is infinite dimensional; the two-point (m = 2)
dynamics nonetheless capture the essential mechanism for feature learning. We state and prove this intuition for the
two-sided step toy model: m = 2 support points x(1) = xg = =6, x? = x; = +6 (6 > 0) with y() = 44, y® = —A,
The target y(x) is supported on {x¢,x; } with values +A (Figure ??). For finitely-supported data, the w;-evolution is
linear in feature space once residuals and backprop signals are fixed; one obtains closed-form f; as a superposition of
kernel bumps. Define d, (¢) = dr ((xP), yP)); W(r)), By p(t) = B (t;x(P)), and

e (1) = /O £1(5) d (s) By (s) ds.

Then
Si(t,x) = fi(0,x) = T,1 (1) Ky (x, x0) — Ty 2(2) Ky (x, 1) 4)
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Figure 4: Two-sided step: xo = —0, x| = +0 with y(xg) = +A, y(x) = —A.

The spike shape is determined by K,,,; all learning dynamics reduce to the scalar coefficients I'x 1(f), ['x 2(f). The
kernel K,,, (NNGP, [?]) satisfies K, (xp,xp) = Ko > O for p € {0,1} (same by symmetry). The off-diagonal
Ky (x0,x1) = K,y (=6, +6) is positive and fastly decaying in 6: 0 < Ky, (x0,x1) < y(6) for some v (8) with y(6) — 0
rapidly as 6 — oo. Thus the cross-term is small for separated points and, being positive, reinforces the leading local
term and yields even better positivity in the log-ratio dynamics.

The full evolution has two terms (local plus non-local):
6;fk(t,xp) = - (t) Km,(x,,,x,,) dp(t) Bk,p+l (t) + Ep(t), 4)

where the non-local remainder E , (¢) satisfies |E, (¢)| < C’ y/(6) with () fastly decaying in 6. We state the theorem
for xq only; the result is symmetrical at x; (Appendix ??).

Trajectory of highest log-ratio at x = 0 vs epoch
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Figure 5: Trajectory of max; ; R; ;j(x = 0) vs. epoch (layer-3 channels). Channel specialization at x = 0 as in Theorem ??.
Setup: n = 1024, r = 15, cos(8mx), 20 epochs.

Theorem 3.1 (Two-sided step: log-ratio growth at x¢ (conditional)). Setting: The two-sided step with r = 2 channels
and a 3-layer RF-LR; the dynamics are (??) and the full evolution (2?). The result is conditional: if the three
conditions in (Hypothesis) hold on an interval I C [0, 00), then the stated conclusion holds on I.

Definition (log-ratio criterion). At xo: do(t) is the residual and By 1(t) = By (t;x0) the backprop signal; at x:
d(t) and By 2(t) = By (t;x1). Define

|f1(2, x0)|

Ria(t, x0) = log -——=.
| f2(2,x0)]

And under the hypothesis that backpropagated signals are stable Hypothesis (at xo, for all t € I): (i) —dy(t) = 0;

(ii) B1,1(¢) has the same sign as f(t,xo); (iii) there exists po € [0, 1) such that |B,,1(t)| < po I%gig;l |B1.1(2)].




Distribution of Positive Log Ratios at z = 0.0
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Figure 6: Log-ratios R; ; at x = 0 over training (all activation pairs; layer-2 Hy).
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with |eo(1)| < C” W (6) for y(6) fastly decaying in 6 (from E,). Hence 3;R12(t,x0) > 0 whenever the leading term
dominates |go|; since K, (xo,x1) > 0, the off-diagonal coupling contributes with a favorable sign and reinforces the
leading term, yielding even better positivity. Strict dominance of channel 1 at xy cannot be lost on I and is amplified
whenever |Bj 1| is not too small. The result is symmetrical at x| (channel 2 dominates there).

Remark 3.1 (On the hypothesis). The theorem does nor assert that (i)—(iii) hold for the canonical two-sided step
(y = £A at x = £0) from generic initial conditions; it only establishes that when they hold on I, the conclusion
follows. Verifying (i)—(iii) from the ODEs for specific initial conditions and A, ¢ is outside the scope of this result.
See Appendix ?? for a discussion of when (i)—(iii) hold in practical settings.

Proof sketch. The proof is deferred to Appendix ?? and only uses eq:dtfk-full-delta and the log-ratio calculus at xo. O

4 Numerical Results

font=small Our experiments focus on 1-dimensional data for three reasons: (i) large sample sizes ensure that convergence
of z[-] is achieved, so optimization dynamics are not confounded by overfitting or sample complexity; (ii) the frequency-
dependent target f(x) = cos(fimx*) — 0.8 cos(fomx?) on [—1, 1] provides a controlled setting to study hierarchical
frequency learning, with a direct link to the two-sided step and Theorem ??; (iii) 1D allows clear interpretability of
channel specialization (spatial location and frequency) and of the log-ratio evolution.

4.1 Log-ratio growth and spike features

We validate our theoretical predictions on frequency-dependent function approximation. Assumption ?? (Appendix ??)
requires ¢, bounded away from zero and thus excludes ReLU; in practice this can be relaxed with high probability,
exponentially in r (Appendix ??). We train 3-layer low-rank ReLU networks on f(x) = cos(8nx) with n = 1024
neurons, » = 15 channels, and N = 5000 samples. At x = 0 we measure layer-2 low-rank channels f, log-ratios
R; ; =log|f;| —log|f;l, and pre-activations Hy (with H, revealing the half-space separation that drives spike learning).
We track max; ; R; ;(x = 0) during training (Figure ??) and the distribution over all pairs (Figure ??); the sustained
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Table 2: Hyperparameters for all figures in this section. Symmetry runs (Figs. ??, ??, ??) and Fig. ??: Adam [?], batch
100, Ir 0.001, y=0.9 every 100 steps; test 4936 for symmetry. Log-ratio (Figs. ??, 2?): SGD, Ir 0.01, batch 160. Target
(f1, f») denotes f(x) = cos(fimx?) — 0.8 cos(fomx?) on [-1,1].

Figure L n r  Target Nyqin Epochs batch RF
22,22 3 1024 15 cos(87nx) 5k 10k 160 -

2? 4 1024 8 (36,12) 2k Sk 100 True
?? 8 1024 15 (144,48) 4k 10k 100 True
2? 8 1024 20 (144.48) 4k 10k 100 False
?? 4 1024 50 (36,12) 1k 1k 100 False

growth indicates that one channel increasingly dominates at x = 0, consistent with Theorem ??. The mean-field weight
distribution over training is shown in Figure ??, and spike-like specialization in Figure ??(a). Experimental setup and
further details are in Appendix 2?.

4.2 Channel and activations learn symmetric spikes

We examine symmetry preservation by RF-LR on highly oscillating targets. Under batched optimization, markedly
non-symmetrical features can be learned for symmetric targets. Specifically, all our targets are symmetric about
x = 0 since both terms are even in x. When trained with SGD, low-rank networks maintain this symmetry, whereas
full-rank networks show asymmetric structures. Channel feature learning in low-rank networks thus preserves geometric
properties of the target, likely due to the implicit regularization of the low-rank constraint.

5 Conclusion

We have shown that when the mean-field dynamics converges, the limit is a global minimizer; this persists under
low-rank constraints for mean-field networks of depth L > 2. Recent work has established convergence to a global
minimizer for full-rank three-layer networks without assuming loss convexity, but it remained open whether these
guarantees hold for more layers. Our key insight is that the low-rank and random features structure are minimal to
maintain the universal approximation property throughout training, which preserves the conditions needed for the limit
to be a global minimizer when training converges.

11



Mean-Field Weight Distribution - Epoch 0
factor4_rank50_mom0.3_Ir0.01

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
Weight Value

Mean-Field Weight Distribution - Epoch 50
factor4_rank50_mom0.3_Ir0.01

Mean: 0.0001
Std: 0.0553
144
124

10

Density

—-1.00 -0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75
Weight Value

Figure 10: w; density at epoch O (top) and symmetric at 50 (bottom).

A Appendix Overview: Our Results and Their Correspondence to Nguyen et al.

This section lists all lemmas, theorems, and corollaries in our appendix and, for each, states the corresponding result in
[?] of which it is an adaptation. Our proofs follow their structure and are modified to account for the low-rank mixing

He=37_, Lii)kfkm, the ||L©)]|e.1 < rK bounds, and the max <y <, over channels in norms.

Assumptions. Our Assumptions ??-?? (Appendix ??) and ?? (Appendix ??) adapt the forward, backward, init,
IrSchedule, and neuronal-embedding assumptions and the initialization/regularity framework in [?]. The low-rank
mixing bound in ?? and their diversity-of-random-features assumption are specific to our RF-LR setting.

Theorem ?? and Appendices ?? and ?? are original to this work.

Reference: Nguyen et al. In [?], thm/lem/prop/cor share one counter. Main text (proofs in appendix): Lemma
8 (bounds MF a priori), Lemma 10 (difference MF). Appendix: Theorems 43-45; Lemmas 46—49 (Lipschitz
forward/backward MF, general); Lemmas 50-53 (square Hoeffding; initialization compare; bounds NN a priori; a priori

12



Table 3: Our appendix lemmas/theorems/corollary and the Nguyen et al. [?] result each adapts.

Ours Type One-line statement Adaptation of (Nguyen et al.)

?? Lemma Bi-Lipschitz of Hy, ps(H¢) in Lemmas 46, 48 (Lipschitz for-
W with ||L©]| < K. ward MF, -general)
??  Lemma A priori W; < Ky(¢) with (1 + Lemma 8 (bounds MF a priori)
rK)'/2 factor.
?? Lemma F (W?) c ‘VV}) . Invariance in proof of Theorem
7 (existence ODE)
?? Lemma Solution operator F contrac- Lemma 10 (difference MF)

tive in || - ||;.
?? Lemma Sub-Gaussian bounds for Lemma 51, Theorem 45 (ini-
>k ax Uy (low-rank sums). tialization compare, iid-hilbert-

higher-moment)
?? Lemma |H>|, |fx| bounds scale with Lemma 48 (Lipschitz forward

IILlco,1- MF - general)
?? Lemma Moment bounds for H, = Lemma 52 (bounds NN a priori)
2k Loy ke fre

?2?  Lemma Dp(W,W) < ---eKr(+K)  Proposition 22 (particle cou-
pling - bounded)
?2?  Lemma Dr(W,W) < -..eKr(+K)  proposition 23 (gradient descent

- bounded)
??  Theorem Dense span {¢;((L%(c1),-))} Assumption (diversity); no di-
maintained (frozen L?). rect lemma (specific to frozen
RF)
??  Theorem D7(W,W) < Cexp - Cyidmn - Corollary 17 and full quantita-
Clog. tive framework
??  Corollary |Ez[y(Y,$)] — Corollary 17 (gradient descent
Ezly (Y. )l <---. quality)

MF time difference); Theorem 54 (iid dynamics-full); Lemma 55 (full-support-2); Propositions 22, 23 (particle coupling
bounded; gradient descent bounded); Corollary 17 (gradient descent quality).

B Notation and Neuronal Embedding Framework

We keep the notation and neuronal embedding framework of [?]. In the mean-field framework, neurons are indexed by
continuous random variables rather than discrete indices. This neuronal embedding approach treats each neuron as a
sample from a probability measure, enabling rigorous analysis in the infinite-width limit.

Neuronal indices: We use C; € C; and C; € C, to denote random variables indexing neurons in the first and second
layers, respectively. These are drawn from probability measures p; and p; on spaces C; and C. In the finite-width case,
C1(j1) and Cy(j2) correspond to countable or uncountable neuron indices j; € {1,...,n;} and j, € {1,...,n}.

Weight functions: The weights are functions of time and neuronal indices:

* wi(t,Cy, k) € R: weight for channel k € {1,...,r} of neuron Cj in the first layer at time ¢.
* wy(t,Cy) € R: weight for neuron C; in the second layer at time ¢.
e W(t) = (wi(t,-,+),wa(t,-)): the full weight configuration at time 7.
Feature maps and activations:
» L°(Cy) € R%: frozen random feature vector for neuron C; (drawn i.i.d. from a Gaussian measure); we specify
the law of L°(C;) when sampling the network.
* ¢; : R — R: activation function for the first layer (e.g., Leaky ReL.U or sigmoid).
* ¢7 : R — R: activation function for the second layer.

Hy(t,c2; X, W(t)) = Xi_i Lesok fu(t; X, W(t)): second-layer pre-activation, where fi(t; X, W(t)) =c,
[w1(t, C1, k) @1 (L°(Cy)X)] are the channel-wise partial functions.

13



Backpropagation signal (all layers): The gradient 9. /0w at each layer is (upstream backpropagated signal) X (local
derivative). Deriving d;w from —& z[- - - | at each layer yields:

* Top layer (layer L — 1): The backpropagated signal from the loss is Dy _1 = dy = 0;Z (Y, 5(X; W(1))); itis
used in the wy _1-ODE.

¢ Channel-k signal from layer ¢ to the layer below (¢ = 2,...,L — 1) B,(f) (t; X, W) =c,
[L(Ci)k @, (He(t,Co; X, W) we(t,Cp)], k € {1,...,r}. This aggregates gradient information from layer ¢
through the mixing matrix L(*) and the activation derivative ¢; for Leaky ReLU, ¢}, (u) = 1{u > O}+al{u < 0}
with @ € (0, 1). In the 3-layer case, By := B,(f).

Loss and learning rates:

* dp(Z;W(1)) = 052 (Y, $(X; W(z))): loss derivative with respect to the network output, where Z = (X,Y) is

a data sample and $(X; W(¢)) is the network output.

o £1(t),&2(1) = 0: learning rate schedules for the first and second layers, respectively.

Kernel function:

* K, (x, X): kernel that measures similarity between input locations x and X, induced by the untrained first-layer
feature measure g (the pushforward of the initial first-layer weights). It is defined by

Ky (r.x') = / 01(6x) 01 (6x') po(d6).

For Leaky ReLLU or sigmoid ¢ and pg the pushforward of i.i.d. Gaussian or uniform-on-sphere first-layer
weights, K, coincides with the first-layer NNGP kernel [?]. This kernel appears in the evolution equation for
the partial functions f (z, x).

Expectations: z[-] denotes expectation over the data distribution, ¢, [-] over the first-layer neuron measure, and ¢, [ -]
over the second-layer neuron measure.

C Assumptions

This section contains the complete statement of all assumptions used in our theoretical analysis. These assumptions are
referenced in the main text with their names in italics.

Assumption C.1 (Bounded Activations and Mixing). There exists a constant K > 1 such that:

* Activation functions: ¢| and ¢; are K-Lipschitz; ||¢} ||« < K; and ¢/, is bounded away from zero, i.c.
inf,, |/ (u)| > 1/K. For well-posedness, ¢ (H¢) must be bounded in the analysis; this holds for sigmoid
and tanh (||¢/]|e < K); for Leaky ReLU ¢(u) = max(u, au) with a € (0, 1), ¢ is unbounded but ¢ (Hy)
is bounded when pre-activations H, are (as in our a priori ODE bounds). ReLU is excluded because ¢’
vanishes on (—co, 0]. For ReLU and a high-probability relaxation in practice, see Appendix ??2.

* Low-rank mixing matrix: The mixing matrix entries L, x are random variables (e.g., Uniform) with
Sup., |[Le, x| < K almost surely, and k +— L., x is measurable for each ¢;. This implies ||L||c,1 =
Sup,., 21 |Le,.k| < rK almost surely.

Assumption C.2 (Sub-Gaussian Initialization). The initial weights satisfy sub-Gaussian moment bounds:

* For the first-layer weights: sup,,,; ‘/Lﬁ maxi<k<r ¢, [|w(l)(C1, k)|’”] Lfm < K for some K > 0.

1/m

* For the second-layer weights: sup,, -, \/%C [|w(2)(C2)|m] <K.
2

* Equivalently, in terms of ¢, norms: [w;(0)], < coand [w2(0)], < co, where [[-], denotes the ¥» norm
controlling moment growth.
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This ensures that the initial weight distributions have controlled tail behavior, which is essential for the well-posedness
argument.

Assumption C.3 (Data Distribution and Loss Regularity). * Bounded inputs: |X| < K with probability 1,
and the feature map satisfies ||L°(c;)|| < K for all c; € Q.

e Loss: 0,L(y,-) is K-bounded and K-Lipschitz for all y in the support of # (for well-posedness and
continuity of &). Less condition: 9, L(y,$) = 0 implies L(y, ) = 0. For non-negative £, whenever
E[h L(Y,u)|X = x] = 0 we then have E[ L(Y, u)|X = x] = 0, so the first-order condition identifies global
minimizers. Examples: MSE (0, £ = 0iff = y, and L(y, y) = 0); many classification losses.

Assumption C.4 (Diversity of Random Features). The support of p! (the measure on Q; indexing the first-layer
random features) is ¢ (or dense in ). This ensures that the random features {¢; (L%(c1)-) : ¢; € Q;} have dense
span in L?(Px), which is essential for the universal approximation property.

Assumption C.5 (Non-Degeneracy). To ensure that the limit point (Wwy,...,wr) is non-degenerate (e.g.,
max|<x< (Wi (C1, k) # 0) > 0 for the first layer and (wy(C¢) # 0) > 0 for £ = 2,...,L), we require one
of the following:

1. The initial loss satisfies Sf(w(l), .. .,wg) <z [L(Y,¢r(0))]. Then by the gradient flow property, the
limit point must have non-zero mass for each of wy,...,wy (e.g. maxj<x<,(W1(C1,k) # 0) > 0 and
(We(Cp) £0) >0for £ =2,...,L), so (wy,...,wr) is non-degenerate. This condition requires that
the initial network performs better than the trivial predictor $ = 0, which is satisfied for most reasonable
initializations (e.g., small random weights) with high probability.

Theorem C.1 (Universal approximation automatically maintained). The learning trajectory automatically maintains
the universal approximation property of the function class represented by the first layer’s neurons throughout training.
Specifically, if supp(L°(C1)) = R and ¢, is Leaky ReLU or sigmoid (or any non-polynomial activation), then the
function class {@1(L%(c1)-) : c¢1 € Qi} has dense span in L*>(Px) throughout training.

This follows from the fact that since L°(C) are frozen random features with full support, and Leaky ReLU or sigmoid
is non-polynomial, the dense span property is automatically maintained: ¢1(a f + b) for random a, b always forms a
dense span. This is the key property that, combined with low-rank structure and the loss condition in Assumption ??,
enables convergence to a global minimizer.

Assumption C.6 (Convergence to Limit Point). There exist functions w : Q; X {1,...,r} — and w, : Q; — such
that as r — oo, there exists a coupling 7; of p!' x p? and itself such that:

J s aediiaen] max 1110l inch. ) = i er Rl dmerenccy = 0. ©

/(1 +[Wwa(e2) DIwale2)| Iws(t, ¢3) = wa(ea)l dmi(cr, e2, ¢, ¢h) — 0, @)

where W* (1) = (w](z,,), w5(t,-)) is the solution to the mean-field ODEs (??). This assumption ensures that the
training dynamics converge to a well-defined limit point in a Wasserstein-like sense.

Remark C.1 (On the assumptions). Universal approximation is automatically maintained (Theorem ??), which
is the crucial difference from previous work. We do not assume loss convexity; the function class maintains its
approximation power throughout training. The frozen random features in the first layer with full support automatically
ensure dense span: since ¢ (af + b) for random a, b and non-polynomial ¢; (e.g. Leaky ReLU or sigmoid) always
forms a dense span, this property is automatically maintained rather than assumed, providing a rich fixed basis
independent of the low-rank structure in subsequent layers.

The Convergence to Limit Point assumption is typically verified by showing that the loss decreases along trajectories
(gradient flow property), establishing compactness of the trajectory set, and using stability arguments such as
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LaSalle’s invariance principle. The low-rank structure enters through the max; over r channels in (??), but the
overall structure remains similar to the full-rank case.

D Technical Lemmas and Proofs for Well-Posedness
The lemmas below and the techniques underlying the assumptions in the previous section are from the rigorous

mean-field framework of [?]. We adapt them to the low-rank case by accounting for the r channels and the mixing
matrix L (e.g., through ||L||c,; < 7K).

D.1 Key New Trick: Bi-Lipschitz Property
Before proving well-posedness, we establish a key technical lemma that will be used throughout the proof.

Lemma D.1 (Bi-Lipschitz property of He, { = 2,...,L — 1). For any W' = (w;,...,w’L_]) and W’ =

(wY,...,w}_,) (in the 3-layer case W = (w1, w2)) satisfying the regularity assumptions, we have the following for
eacht¢=2,...,L—1.
Layer € = 2.

|Ha(t,c0; X, W) = Ha(t,c0: X, W")| < K 1L [loo1 max c, [l (2, C1 k) —w/ (t,C1, k)],

(4
where || Lo,y = sup,, S5 ILL),

then

| < rK under the entrywise bound (L\*) = L). If ¢, is Leaky ReLU or Lipschitz,

o2 (Ha (1, 2 X, W) = @2 (Ha(t,¢2: X, W))| < K ILP | 1 max c, [lwi(z,C1, k) —w (2, C1, k).

Layers ¢ =3,...,L — 1.
|He(t,cos X, W) =He(t, co; X, W)| < K |IL9 |01 (c [IW,_ (2, Coor)-w}_ (2, C£—1)|]+W}'_1,'<%€—1(W',W”)),
-1

where Be_1 (W', W) is the RHS of the bi-Lipschitz inequality for He—1 above. If ¢ is Leaky ReLU or Lipschitz, the
same bound holds for |@e(He(t,ce; X, W) — @p(Hy (1, co; X, W))|.

Proof. Layer ¢ = 2. By definition H(t,c2; X, W) = Xi_ | Lok fi(6: X, W) with fi(t; X, W) =c,
[wi(t,C1, k) 1 (L°(C1)X)]. Then

Hy(t,c0 X, W) — Hy(t,c0. X, W) = Z Loy ik (fe(t: X, W) = fi(t; X, W"))
k=1

= D Leyie, [ (1, €1 K) = wi/ (1,C1 ) @1 (L(CX)].
k=1

Taking absolute values and using boundedness of ¢ :

|Ha(t, c2: X, W') = Ha(t, c2; X, W")| < Z |Les il ¢, [IW) (2, C1, k) = w/ (2, C1, k)] o1 (LY(C1) X))
=1

,
<K kz_; |Ley. il max c, [Iw)(z,C1, k) —=wY (2, C1, k)]

< KILP o max ¢, [IW}(2,C1, k) = wi (1, C1, k)]
1<k<r

The ¢, (H7) part follows from the Lipschitz property of ;.

Layers ¢ > 3. We have Hy(t,ce; X, W) = Zzzngi)kfk(g)(t;X,W) with fk(f)(t;X,W) =c,

[we1(t,Cp-1,k) pp—1(He—1(t,Cp-1; X, W))] (and we_1(t,Cr—1,k) = we_1(t,Cp—1) when the layer has no chan-
nel index). Then

FEOWY = FOW) =c,, [Wo_y = W) pemt (He—1 (W) + Wiy (@e-1 (He—1 (W) = @1 (He—1 (W)))].
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Using |@e-1]| < K, |ge-1(a) — @e—1(b)| < K|a — b|, and the inductive bound for |[Hp_1(W’) — He_1 (W")]|:
t ’ € 77 ’ 7" ” ’ 17
LW = £EOWN < K e [ 1wy = wil] + K e (W7 | 1Het (W) = Hoeoy (W)
<Kc,, [|w}_1 - w}'_1|] + Kw}'_lt B (W, W").

Thus |Hy(W') = He(W")| < ||L© ||, maxy |fk(€)(W’) - fk(f)(W”)| yields the claim. The ¢, (Hy) part follows from
the Lipschitz property of ¢. m

From here, the proof follows as usual. Foreach{=2,...,L -1, Hp(t,ce; X, W) bi-Lipschitz in W is sufficient and
equivalent to ¢, Lipschitz; that is the only thing that matters. The remaining is simple: after defining norms, we update
Ko () with a factor (1 + rK)'/?; the solution operator F, a priori bounds, and the contraction argument then proceed as
in the full-rank framework [?].

D.2 Norms and Spaces

We equip the mean-field parameters with several norms. For the low-rank case: wiy =
maxi<k<r ¢ [Sups<, [Wi(s, Ci, P10, way =¢,  [supyg, Iwa(s, C)PPIV0, W, = max(wi,,wa,). L
type:  lwills = maxick<r ¢ [supyg, Wils, CLOPIY2, walle =c, [sups<, Iwa(s, G212, Wl =
max([lwille, lw2lle).  wa-type: [willy, = @Supmzl‘/%mahgkgrc, [sup,<, [wi(s, Cr, )I™1V™, [wally. =
V50 sup,,,5 \/Lﬁcz[supsgt lwa (s, C)I™1Y™, [W]ly.: = max([wi]y. [w2]ly.r). The factor V50 ensures [W],., >

W; and [W]y, > |IW|;. Random variables: max}'(W) = maxi<i<,sup,, [wi(s,Ci, k)|, max;*(W) =
Supg<; [w2(s, C2)|. Distance for W, W’:

W = Wl; = max([lwi = willr, w2 = whlle), ®)

with [[wy = w/ll; = maxi<x<, ¢, [Supg<, (Wi (s, C1, k) = w (s, C1, k)[*]V/? and [[wy = w)ll; =c, [supy<, [wa(s,C2) —
wh (s, Co) ]2

D.3 Solution Operator and Fixed Point Formulation

Denote by MW, the space of mean-field parameters W with ||[W|y < o. Given T > 0 and W(0),
we define F mapping W € Wr to F(IW)() = {Fi(W)(,-,-), FLb(W)(t,-)}, where F{(W)(t,c1,k) =
wi(0.c1.k) = [ E1()2[dL(Z: W' (5)) @1 (LO(c1)X) Bi(s: X, W'(s)]ds and Fy(W))(t.c2) = wa(0,c) -

fot E(8)z[dL(Z; W' (s5)) @2(Ha(s, c2; X, W' (s)))]ds, with By (s; X, W’) =¢, [Lcy.kx 05 (Ha(s, Co; X, W) w) (s, C2)].
At initialization F(W’)(0, -, -) = W(0); the time integrals use W’. A solution on [0,T] is W € Wy with F(W) = W.
We say W is a solution on [0, o) if its restriction to [0, 7] is a solution for all 7" > 0.

D.4 A Priori Bounds

Lemma D.2 (Weight bounds). Under Assumptions ?? and ??, given an initialization W(0), a solution W to the
mean-field ODEs, if it exists, must satisfy that for any t € [0, 00):

W, < Ko(2),
where K(t) is a non-decreasing function of the form
Ko(t) = (1 +rK) 2 K*(1 + ) (1 + W),
for some constant k > 0 depending on K and r.

A similar result holds for the Y, norm. Under the same assumptions, for any t € [0, 00), there exists Ky(t) > 1 of the
form
Ko(t) = (1+rK)' 2 KX (1+ ) (1+ [W]5, ),

such that a solution W, if it exists, must satisfy Wy < [W]y.» < Ko(t) for any t € [0, o). Furthermore, by assuming
[W]y,0 < oo, forany B > 0:

(max (max;" (W), max;"*(W)) > Ko(1)B) < Ce K18’
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for some universal constants C, K > 0.

Proof. We do not provide this proof here because of conciseness to prove sub-gaussian bounds for trivial lipschiz
variable. The proof follows from Gronwall-type arguments applied to the ODEs (??). The key steps are:

1. Use the boundedness and Lipschitz properties of ¢y, ¢2, <p’2, and 6, L.
. Control H, using the low-rank structure: |H3| < ||L||,1 maxg | fx| < rK maxg ¢, [|w(Cy, k)[].
. Control By using the structure: |By| < K¢, [|Lcy, k| Iw2l] < rKé2[|wz|].

. Apply Minkowski’s inequality and Gronwall’s lemma to obtain polynomial growth in ¢.

| B S B \S]

. The sub-Gaussian tail bound follows from the i, control and a union bound.

The constant « depends on K and r through the factor ||L||,1 < 7K, but remains polynomial rather than exponential in
r. o

These a priori bounds lead us to consider the following spaces, given an initialization W(0) and an arbitrary terminal

time T > 0:

* The space Wy of mean-field parameters W’ = {W’(¢) };<r such that Wt < Ko(T).
* The space Wy C Wy of mean-field parameters W’ € ‘Wi such that:

[W ly.r < Ko(T),
(max (maxy (W), maxy>(W’)) > Ko(T)B) < Ce X8 yp >,

and W’ (0) = W(0) (so all elements in (W}) share the same initialization).

It is easy to see that W C Wi since W'z < [W']y.r-

We equip these spaces with the metric (W/, W”) + ||W' — W”||7. By Lemma ??, any solution W to the mean-field
ODEs, if it exists, must belong to Wo.

Lemma D.3 (Solution operator maps bounded sets to bounded sets). Under Assumptions ?? and ??, for any

W’ e "W7Q, we have F(W') € (W;).

Proof. The proof follows the same argument as Lemma ??, using the integral form defining F and the bounded/Lipschitz
properties of the drifts. The key is that applying bounded/Lipschitz drifts to W’ preserves the moment and tail bounds
with constants controlled by Ko (7). O

D.5 Difference Estimate

Lemma D.4 (Solution operator is contractive). For a given B > 0, consider two collections of mean-field parameters
W', W’ € Wr such that:

(max (maxy (W), maxy?(W’)) = Ko(T)B) < Ce K1,
(max (max}y (W”), maxy>(W")) > Ko(T)B) < Ce KiB?

Under Assumptions ??-2?, foranyt < T:
t
IFW") = FOW")ll: < (KKo(T))* / (4 BYIW = Wl + V2e K18 2) g,
0

where the constant depends on K and r through |L||c,1 < rK.

Proof. The proof uses a good/bad event decomposition:

1. On the good event {max(maxy/, maxVTvz) < Ko(T)B}, the drifts are Lipschitz in W with constant (1 + B)Ky(T).
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2. The difference |Hy(W’) — Hy(W"")| is controlled using Lemma ??:

[Ho (W) = Ho(W”)| < K| Llleo,s max ¢, [[w} (Cp, k) = wy (Cp, K)]] < rk? max [lwy = wYll;.

3. The difference |Bx(W’) — Bx(W'’)| is controlled similarly, giving a factor (1 + B).

4. The bad event contributes an exponentially small remainder e =K' B2,

5. Integrating in time and using Minkowski’s inequality yields the result.

D.6 Complete Proof of Theorem ??

Proof of Theorem ??. We perform a Picard-type iteration argument. Consider an arbitrary finite 7 > 0 and W/, W" €
WY. From Lemma ??:

t
IF(W') = F(W")|l; < (KKo(T))* ((1 +B) / W’ = W ||yds + TV2e K182
0
t
=ki(1+B) / |W = W"||sds + kze_k3Bz,
0

for any B > 0, where k1 = (KKo(T))*, ko = (KKo(T))*TV2, and k3 = K, /2.

By Lemma ??, F maps (W}) to ’W}) . We can iterate this inequality to obtain:
T 2
I (W) = F™ (W)llz < ki(1+B) / IFC=D W) = FD (W) |7, d T2 + kae ™%
0
T ,pT
< kj(1 +B)2/0 /0 |Fm=2 (W) = FU=2 (W) ||l [(Ty < T)dT3dT;
2
(Tki(1+B)™" _op
+ky Z —f‘ e 3
£=1
1 2
< _'kaqn(l +B)m||W’ _ WN”T + kzeTkl(]+B)7k3B
m.
1
< _|ka}1’11(1 + \/%)m”WI _ WN”T + kzeTkl(H—M)_k}m,
m!

where we choose B = 4/m in the last display. Note that since Wy < oo, Ko(T') and hence k1, k> are finite for finite 7.
By substituting W = F(W’), we obtain:

DTUFTD WY = FO W)= D IF™ (W) = F (W)l < oo
m=1 m=1

Hence as m — oo, F"™) (W’) converges in || - || to a limit W € 9, which is a fixed point of F. By Lemma 2?2, W
belongs to ‘W}).

The uniqueness of the fixed point comes from the above estimate, since if W’ and W'’ are fixed points of F, then they
are both in W}, and:

1
W =W”llz = [|F" (W) = F (W)l < —T" k(L4 Nim)™ W = W[ + kyeT 1 (Frvm=km,
m!

and one can take m arbitrarily large. This proves that the solution exists and is unique on ¢ € [0, T']. Since T is arbitrary,
we have existence and uniqueness of the solution to the mean-field ODEs on the time interval [0, co). m]
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E Lemma and proofs of convergence

E.1 Channel Mixing and Low-Rank Structure

The low-rank channel mixing structure enters through:
,
Ha(t, 33 X, W) = > Ley i filt; X, W),
k=1
where fi.(t; X, W) =¢, [wi(t, C1, k) ¢1(L°(C1)X)] are the r partial functions.
Under the entrywise bound sup,., 4 |Lc, k| < K, we have:

IL||leo,1 <K, ILllw2 < VP K.

Lemma E.1 (Sub-Gaussian bounds for low-rank sums). Let (Uy);_, be real random variables on a common
probability space and (ax);_, €" deterministic. Then for every m > 1,

r m l/m r r
[ Y atl™| ™ < D lal QU177 < (3 laxl) max (Uel™)".
k=1 k=1 k=1 fshksr

Consequently, any “Y-type” seminorm defined by sup,,- | m= 12| - |V satisfies

1 - m]1/m - 1 1
sup — [ axUy ] < ( |ak|) max sup — [|Ug|™]/™.
m>1 \/ﬁ ikzz‘f | kZ:; I<ks<r ;> \/E
If one prefers an b, version, then also Y5 _, lax| < \r (Zg ai)l/2 vyields a \Jr factor.

Lemma E.2 (Forward propagation bounds scale with mixing matrix norm). Assume ¢ is bounded by K. Then for
everyt > 0 and every ¢y € Q;,

,
sup [Ha(s, c23 X, W)| < ( 3 |Lepal) max sup [fi(ss X, W)I < I|Lll,t max sup (s X, W)l.
s<t =l 1<k<r s<p 1<k<r g<t

Moreover,

<K

sup | fi(s; X, W)| <c, Sgplw](s, C],k)l] :
St

S<t

sup [w1 (s, C1, k)| |1 (L°(C1) X))
S<t
Combining these inequalities and taking moments yields, for every m > 1,

1/m 1/m
x| supsup Ha(s, e X, W | ™ < K lILllo max ¢ | sup hwi (s, €1, 001" |
I<k<r s<t

S<t

In particular, in the y,-type calibration,

1 1/m
V50 sup —= x| supsup |H (s, ¢2: X, I | ™ < K 1Llo [wily.r-

m>1 Ym s<t <

E.2 Proof of Theorem ?? (global minimizer at limit, any depth)

This subsection adapts the core argument of [?], Sec. 6.3 (Proof of Theorem 34), to our low-rank setting for any
depth L > 2. We omit the homotopy argument (their Lemma 37): the first-layer feature map L°(C)) is frozen, so
supp(L°(Cy)) =4 at init and at all ¢, and dense span follows without a homotopy. The main-text

High-level proof idea and [?] Sec. 6.2.1 summarize the idea; we give the formal steps.

Dense span without homotopy. L°(C) is not trained. By Assumption ?? and Theorem 2?2, {¢1(L%(c})-) : c1 € Q1}
has dense span in L>(Px) at all t > 0 and at the limit.
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Zero derivative at the limit. Let W = (W, ..., wz_;) be a limit point under Assumption ?? (and its natural extension
to L layers with couplings for all w,). At the limit, 9,w, = 0 for all £. From (??), for the top layer £ = L — 1:

z|dL(Z; W) 1 (Hp-1(cL-1; X, W))] =0, Yep-1.
By backpropagation, the first-layer ODE yields
2[dL(Z:W) o1 (L0(e)X) BY (XsW)] =0, ¢ esupp(p!), ke {1,....r},

where B](Cz) (X;W) =¢, [Lcyk @5 (H2(C2 X, W)) w2(C5)] (and for L > 3, B](f) involves He, we, L) in the same way).
Since B/(<2) depends only on X and W, we have

XLy [dL(Z: W) | X1 @1 (L0(e)X) B (Xs W)] =0 Vey, k.

The function x —y|x [dr | X = x] B,(f) (x; W) thus has zero inner product in L?(Px) with ¢ (L%(cy)-) for all ¢;. By
dense span, y|x[dr(Z; W) | X = x] B](cz) (x; W) = 0 for Px-ace. x.

From integrated identity to 9y a.e. We have y|x[d.(Z;W) | X = x] Bl((z) (x; W) = 0 for Px-a.e. x. Under
Assumption ??, maxj<x<,(Wi(C1,k) # 0) > 0 and (w¢(Cr) # 0) > Ofor £ = 2,...,L — 1; by Assumption ??,
@5 (Ha(c25x, W)) # 0 for Px-a.e. x and p>-a.e. c5. Hence for Px-a.e. x and almost every c», the factor in B](cz) involving
¢’ is non-zero, so Bl(f) (x; W) is non-zero on a set of positive Px-measure. On that set, yx[d(Z; W) | X =x] =0,
and thus 7z [0 Z (Y, $(X; W)) | X = x] = 0 for Px-a.e. x.

On ReLU and relaxing the activation-derivative assumption. Assumption ?? requires ¢} bounded away from zero
and excludes ReLLU. At convergence, we are at a stationary point: d,w, = 0 for all £, so the ODE right-hand sides vanish
and all backpropagated signals contribute zero to the gradient—training has converged because the gradient is zero.
The step above uses ¢/, (H) # 0 to deduce Bf{z) (x; W) # 0 on a set of positive measure and thus [dy | X = x] =0 a.e.
The only problematic case for ReLU is when the limit W is such that B,(f) = 0 Px-a.e. purely because ¢} (H>) = 0
everywhere on the relevant support (for ReLU, H, < 0). That is convergence to a degenerate point where the gradient
vanishes solely because all backprop through the activation derivative are zero. This event is exponentially rare in the
rank r: it requires the pre-activation configuration (over r channels and the layer width) to lie in a degenerate set, and
the probability of landing there is of order e =@,

Optimality (Assumption ??). We have [ L(Y,$(X;W)) | X =x] =0 for Px-a.e. x. By the loss condition,
E[0,L(Y,u)|X = x] = 0 implies E[L(Y,u)|X = x] = 0. Thus [L(Y,$(X;W)) | X = x] = 0 for Px-a.e. x, so
Z (W) = 0. For non-negative £, W is a global minimizer.

ZL(W(t) —» Z(W). By Assumption ??, the couplings 7, and the Wasserstein-like integrals (?2)-(2??) (and
their L-layer analogues) tend to 0. The output difference |§(X;W(¢)) — §(X;W)]| is bounded by a K-multiple
of those integrals (via the low-rank structure: Hy = > Le, .k fx, B,(f), and the regularity of ¢, 0»L). Thus
LW()) = LW) =7 [LEY, $(X;W(1)) - LY, 9(X;W))] is bounded by K [|5(X; W(1)) - $(X; W)[] — 0 as

t — oo,

F Detailed Proof Sketches

F.1 Well-Posedness: Picard Iteration Details

The key technical result is that the low-rank structure only multiplies constants by r:

Lemma F.1 (Moment bounds for low-rank sums). For the low-rank sum Hy(t,c2; X, W) = 25y Lok fe (£ X, W),
we have

1/m 1/
X Supsup|H2(s,c2;X,W)|m SI<||L||DO,1 max c, SuplWl(S,Cl,k)lm >
s<t ¢ I<ksr s<t

where ||L||o,1 < 7K under entrywise bounds.

This lemma shows that the forward propagation bounds are multiplied by at most r K, but the structure of the Picard
iteration remains unchanged. The contraction mapping argument proceeds as in the full-rank case, with constants
depending on || L||co.1-
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G Quantitative Approximation by the Mean-Field Limit for Low-Rank Networks

This appendix provides a rigorous quantitative bound on the approximation error between finite-width low-rank networks
and their mean-field limit. The key result shows that the approximation error scales as O(1/+/limin + Ve) With explicit
constants, where 7y, is the minimum width across layers and € is the learning rate step size. This bound holds
for any n; and n,, independent of the data dimension d, similar to the full-rank case [?, ?]. The bound suggests
that widths ny, ny = 1000 are typically sufficient to observe mean-field behaviors, as empirically validated in [?] for
high-dimensional real-world data.

G.1 Main Result: Approximation by the MF Limit

Assumption G.1 (Initialization for Low-Rank Networks). We assume that ess-sup max<g <, |w(1)(C 1,k)| < K and
ess-sup|wg(C2)| < K, where w(l) and W(z) are the initial weights as described in the low-rank architecture setup.

Theorem G.1 (Finite-width approximation error bound). Given a family Init of initialization laws and a tuple
{ny,ny} that is in the index set of Init, perform the coupling procedure for the low-rank architecture as described
in Section ??. Fix a terminal time T € €eNy. Under Assumptions ??, ??, and the low-rank structure with mixing
matrix L satisfying ||L||c.1 < rK, for € < 1, we have with probability at least 1 — 26,

QT(W’ W) < Cexp : Cwidth : Clog’

where Cexp = eKr (k) i = 1/\min + Ve, Clog = \/log(3(T+ D12, /6 + €), with nyin = min{n;, ns},
Nmax = max{ny,ny}, Kr = K(1 +TX), and the factor (1 + rK) accounts for the low-rank structure through
IL]leo,1 < 7K.

The theorem gives a connection between W(|#/€]) (the discrete-time finite-width network) and W (¢) (the continuous-
time mean-field limit). The key difference from the full-rank case [?] is the multiplicative factor (1 + rK) in the
exponential constant. In the full-rank setting, the exponential factor is eX7, while our low-rank architecture introduces
an additional (1 + rK) factor that accounts for the r independent channels evolving through the mixing matrix L. This
factor reflects the channel feature learning structure: the r channels evolve independently through the mixing matrix L,
each contributing a factor that reflects the multi-channel nature of the learning dynamics.

Corollary G.1 (Test function approximation quality). Under the same setting as Theorem ??, consider any test
function  : R X R — R which is K-Lipschitz in the second variable uniformly in the first variable (an example of
is the loss £ ). For any § > 0, with probability at least 1 — 36,

sup [z [0 (¥, § (X; W (Lt/eD)] = Bz [ (¥, 5 (G W ()] < e2Kr(+rE) (# . %) log!/2 (M B e) ,
t<T Vmin 0

where §(X; W) and $(X; W) denote the outputs of the finite-width and mean-field networks respectively.

Proof sketch. The proof follows the same structure as in the full-rank case [?]. Since ¢ is K-Lipschitz in the second
variable, we have:

Iy (Y, §(X; W) =y (Y, 9(X;W))| < KIF(X; W) - 5(X; W)

The difference |[§(X; W) — $(X; W)| can be bounded by the distance D (W, W) using the low-rank structure of the
network. Specifically, for the low-rank architecture, the output difference involves:

r

1 <
FOGW) = SGWIL < D ILessl - ) willr/el ji g1 (L(Ci (). X))
k=1 Ji=1

—Ec, [wi(t,C1, k)1 (L), X))]| + (similar terms for wy)
<rK2r(W,W)+ K27(W,W) = K(1 +rK)27(W,W),

where we used ||L||e,1 < rK. Taking expectation over Z and applying Theorem ?? completes the proof. O
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Comparison with the full-rank Case. The main difference between our low-rank result and the full-rank case [?] is
the appearance of the factor (1 + rK) in the exponential constant. In the full-rank case, the bound is:

Nmin 0

1 3(T + Dn2,
Dr(W, W) < k7 ( + \/E) logl/z( (T + Digax +e) ’

whereas in our low-rank case, we have:

max

0

2
gT(W, W) < eKT(l+rK) (; " \/E) 10g1/2 (3(T+ 1)}’[ N e) ‘
Nmin

The factor (1 + rK) arises from:

* The low-rank structure of H», which involves a sum over r channels: Hy(t,c2; X, W) = Xi_| Lo,k fi(t; X, W).
* The mixing matrix bounds: [|L||w,1 = sup,, 2j—; [Le, k| < 7K.
» The backpropagated signal By which aggregates over ny neurons with mixing coefficients Lc, k.
However, the fundamental structure of the proof remains the same: we still decompose the error into particle coupling
and gradient descent discretization, and the scaling with np;, and € is identical. The low-rank structure only affects the

exponential constant, not the polynomial scaling. This suggests that the mean-field approximation quality is preserved
under low-rank constraints, with the trade-off being a potentially larger (but still finite) exponential constant.

Remark G.1 (Deterministic mixing matrix and hierarchical learning). The mixing matrix L can be chosen
deterministically (e.g., on a grid) rather than randomly, since the proof only requires the boundedness condition
|[L||o,1 < rK. There is no advantage to maximizing the entries of L; fixing L deterministically with appropriate
structure can enable hierarchical learning, where different channels k specialize to different frequency components
or scales through the backpropagated signal By. This design choice allows for structured learning dynamics while
maintaining the same theoretical guarantees.

G.2 Particle ODEs for Low-Rank Networks

We construct auxiliary trajectories, which we call the particle ODEs for the low-rank case. These are continuous-time
trajectories of finitely many neurons, averaged over the data distribution, adapted to the low-rank structure:

%m(r, J2) = —6()Ez [dy(Z:W (D)) e2(Fat, jo: X WD)

%Wl(t’jl, k) = =£1()Ez [dL(Z; W) o1 ((LO(C1(j1)), X)) Br(£: X, W(1))]

Wherej| = 1,...,n1,j2 =1,....m,k=1,...,r, W(l) = (Wl(t,','),WZ(l,‘)),andt € RZO-
The second-layer output for the particle ODE:s is:

~ ' ~ r 1 ni
Hy(t, j2: X, W) = Z Ly o)k n

Wi (t, j1, k) @1 ((L°(C1(j1)), X)),
k=1 Ji=1

and the backpropagated signal is:

Bi(; X, W) = - Z Ly (jo).k 93 (Ha (2, j23 X, W) Wa (2, ).
J2=1

We specify the initialization W(0): w1 (0, j1, k) = w(C1(j1), k) and w2(0, j2) = w9(C2(j2)). That is, it shares the
same initialization with the neural network W(0), and hence is coupled with the neural network and the MF ODEzs.

The existence and uniqueness of the solution to the particle ODEs follows from the same proof as in Theorem ??,
adapted to account for the low-rank structure. We equip W (¢) with the norm:

Wr = max{ max  sup [w(¢, ji, k)|, max sup |Wwa(t, j2)|} .
T

J1<ny,1<k<r ;< J2Sn2 4 <T
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‘We define the distance measures:

Dr(W,W) = sup {|W1(t, Ci(j1), k) = w1 (t, C1(j1), k)|, w2(t, C2(j2)) — Wa(t, C2(j2))| :
t<T,j Si’l],sznz,ISkSr},
Dr(W,W) = Sup{|W1(LI/€J,j1,k) —wi(t, Ci1(j1), k),

Iwa(lt/el, j2) =wa(t, Co(2))| st < T, i Smp,ja<smp, 1 <k < r}.

G.3 Key Lemmas

Lemma G.1 (Particle coupling bound). Under the same setting as Theorem ??, for any & > 0, with probability at
least 1 — ¢,

2
Dr(W,W) < ;logl/2 (M +e) KT (147K)
V/min 0

in which nygin = min{ny, n2}, Aimax = max{ny, na}, and Ky = K(1 +TK).

Lemma G.2 (Gradient descent discretization error). Under the same setting as Theorem ??, for any § > 0 and
€ < 1, with probability at least 1 — 6,

= 2
9T(W, W) < \/elog (% +e)eKT(1+rK)’

in which Kr = K(1 +TX).

Proof of Theorem ??. Using the triangle inequality:
Dr(W, W) < Dr(W, W) + Dr(W, W),

the result follows immediately from Lemmas ?? and ??, noting that the log(2nn,r/5) term can be absorbed into the
log(3(T + 1)n2,,, /& + e) term up to constants. O

G.4 Proof of Lemma ??

Proof. In the following, let K; denote a generic positive constant that may change from line to line and takes the form
K; = K(1 + %), such that K, > 1 and K, < K7 for all r < T. We first note that at initialization, Zo(W, W) = 0. Since
Wy < K, we have Wy < K7 by the a priori bounds. Furthermore, it is easy to see that Wy < Wy < K almost surely. By
the same argument, Wr < Kr almost surely.

We decompose the proof into several steps.

Step 1: Main bound with low-rank structure. Let us define, for brevity, the differences specific to the low-rank
architecture:

qa2(1,x, ja, c2) = Ha(t, jo;x, W (1)) — Ha(t, c23x, W(1)),
qB.k(t,x) = Br(t;x, W(1)) — Br(t;x, W(1)),

where  Hy(t,c2;x, W) = ket Lk Be [wi(t, €1 k) 1 ((LO(C1),x))]  and  Bi(t:x, W) =
Ec, [Lcy.k 95 (Ha (2, Cosx, W) wa(t, C2)].

Consider ¢ > 0. We first bound the difference in the updates between W and W.
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Bound for w, and w,: By Assumption ?? and the definition of the ODEs:
%Wz(l, Jj2) = %Wz(ﬁ C2(j2))
= & (0Ez [dL(Z; W(1)) e2(Ha (1, j2: X, W (1)) = dL(Z; W(1)) @2 (Ha (1, C2(j2): X, W(1) |
< KEz [|dL(Z;W(1) = di(Zs WD) @2 (Ao (1, j2s X, W(0)))]]
+ KBz [ld(Z; W ()| l@2(Ha(t, jo; X, W(1))) — @2(Ha (1, C2(j2): X, W(D)))]
< KBz [lg2(1. X, j2. C2(2)] + Ke D (W, W),

where we used that dy, is Lipschitz in W, ¢, is Lipschitz, and H, differences are controlled.

Bound for w; and w;: For the low-rank case, we have k = 1, ..., r channels. By the definition of the ODEs:
%Wl(f,jl, k) — %Wl(h Ci1(J1), k)
= |&1(0Bz [dL(Z; W(1) o1((L°(C1(j1)), X)) Bi(1; X, W (1))
~dL(Z;W(1) o1 ((L°(C1(j1)), X)) Bi(1; X, W(1)) ]|
< KBz [|dL(Z; W(1) = dL(Z; W ()] By (t; X, W(1))]]
+ KEz [|de(Z; W) lgp.x (1, X)]]
< KBz [lgp.i(t, X)|] + K, (W, W),

where the expectation over j in B will be handled via concentration.

Step 2: Decomposition of g, with low-rank structure. The key difference from the full-rank case is that H, involves
a sum over » channels. We decompose:

lg2(t,x, j2, c2)| = Zch(jz),k . Z Wi, ji, k) o1 ((LO(C1 (1)), %))
k=1 ji=1

~Ec, [w1 (1, €1, ) 1 (L€, 0)] )|

IA

r 1 ny _ ) '
DUILey gkl | D Wi 1, k) @1 (LO(C1 (1)), x))
k=1 3 W

_EC| [Wl (t’ Ci, k) $1 (<LO(C1)5X>):” .

We further decompose each term in the sum:
%11 W1t j1, k) @1 ((LY(C1 (1)), %)) = Be, [wi (1, C1 k) o1 ((LO(C1), x))]

< max 01 (2, 1. k) @1 ((LY(C1(j1)),x)) = wi (2, C1(jn), k) @1 ((LO(C1 (), x)))|

+ %jzlw](nclm),k)¢1(<L°(cl(jl)),x>> —Ec, [wi(t,C1, k) @1 ((L°(C1), )]

= 02.1.k(x, j2) + Q22 (x, j2).

Therefore:
.
lga2(t,x, j2, c2)| < Z ILc, (o). k1 (02,1,k(x, j2) + @20k (%, j2)) < 7K IIBI?i(r(Qll,k(X, J2) + 022 k(x, j2)),
=1 sk=

where we used ||L||,1 < 7K.
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Step 3: Decomposition of g ; with low-rank structure. For the backpropagated signal difference:

ny

lgB.k(t,x)| = Le, () k 95 (Ha(t, jasx, W) Wa(t, j2)
1

1
np <
j2=
—Ec,[Lc, k 5 (Ha(t, Cosx, W) wa(t, )] .
We decompose:
lgB,x(t,x)| < max |Lc, ).k 05 (Ha(t, josx, W) Wa(t, ja)

—Lc, (o) k @5 (Ha(t, C2(j2):x, W) wa(t, Ca ()|

1 &
+ - L, (jo).k 95 (Ha(t, Ca(j2); x, W) wa(t, Ca(j2))
Ja=1

—Ec, [ Ly k 05 (Ha(t, Cosx, W) wa(t, Co) ]|
= 0g,1,k(x) + 0B,2,k(x).
For O p.1,k, using Assumption ?? and the fact that |L¢,(j,) x| < K:
Ez[0p1x(X)] < Kglfrfl(z (D2(2, j2) — wa(t, C2(j2))]
+wa (1, C2(j2)) | Ez [|Ha (2, j2: X, W) = Ha(2, C2(ja); X, W)I])

<K (2,(W, W)+}n<ar)f Ez[lga2(t, X, j2, C2(j2))I1 | -
25N

Step 4: Concentration bounds adapted to low-rank. For Q> i, we have:
max Ez[Q02,1,x(X, j2)] <K max  |W(t, j1, k) —wi(t,C1(j1), k)|
Jasmp j1<n,1<k<r

< K, D, (W, W).

For 02 5., we apply concentration. Let us write:

Zyi(x 1) =wi(t, e k) @1 (L (1), x)).
Recall that {C; (jl)};.’::l are i.i.d. We have:

E[Zy (X, Ci(ji)IX] = Ec, [Z1,k (X, C1)],

and {Z; x (X, Cy (jl))};.l]‘:1 are independent conditional on X. By Assumption ??, |Z; x (X, C1(j1))| < K, almost surely.
Then by concentration inequalities:

t

. 1 nl?’;k
P(Ez[Q22.k(X, j2)] = Kiyax) < ECXP - .

For Qg 2.k, we note that almost surely:

ILcy(jo).k 95 (Ha(t, Ca(jia); x, W) wa(t, C2(j2))| < K|Lc,(joy k| < K2,

by Assumption ??. Then by concentration inequalities:

1
P(Ez[QB2.k(X)] = Kiy1k) < mexp

”27’%,k
K, ’
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Step 5: Combining bounds with union over k. Taking a union bound over k = 1, ..., r channels, we obtain that for
any yi,7y2 > 0and ¢ > 0, the event:

max { max Ez[|q2(2, X, j2, C2(j2))I],
J2sny

max  Bz[|gs«(t, X)|]}

jisny,1<k<r
< K (1+7K) (D (W, W) + 71 +72),
holds with probability at least:

nr nz)’% nar
1 - —exp

Y2

P\ TK (1 +rK)2

nl?’%
Y1 K. (1+rK)? ’

Step 6: Gronwall argument. Combining the bounds and taking a union bound over a discrete time grid ¢ €
{0,&,2¢,...,|T/&]€} for some & € (0, 1), we obtain:

0 d
sz(l, J2) — EWZ([, C2(j2))

9
J2sny

max { max

max
Jjigny,1<k<r

0 0
Ewl(t,jl,k) - Ewl(t,cl(jl),k)‘}

< Kr(1+7K) (D, (W, W) +y1 +y2 + &), vt € [0,T],
with probability at least:

nl)’%
KT(] +I'K)2

2
nz)/l

| T+1
P\ k(1 +rK)2

3

nr r
— + —exp
Y2

The above event implies:
t
2,(W,W) < Kr(1+ rK)/ (Ds (W, W) +y1 + 72 + &)ds,
0

and hence by Gronwall’s lemma and the fact Zo(W, W) = 0:
Dr(W, W) < (y1 +72 +§)eKT(1+rK>.

The result follows from choosing:

1
¢= Vnmax,
2
vy = Kr(1+7rK) 10g1/2 3(T + Dng 7 ve).
Vi 5
vy = Kr(1+7rK) log!/2 3(T + D)n2 7 cel
Vi 5

G.5 Proof of Lemma ??

Proof. The proof follows the same structure as the full-rank case [?], with careful adaptations for the low-rank structure.
The key difference is that we need to account for the » channels in w; and the mixing matrix L in all bounds.

We consider ¢ < T for a given terminal time T € eN>(. We reuse the notation K; from the proof of Lemma ??. Note
that K; < K7 for all 1 < T. We also note that at initialization, Zo(W, W) = 0.
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For brevity, let us define quantities that relate to the difference in the gradient updates between W and W:
q2(k,z,Z, j2) = dr(zs W(k)) g2(Ha(k, j2; x, W(k)))
— dp(Z;W(ke)) g2 (Ha(ke, jo; %, W(ke))),
ra(k,z, j2) = &2(ke)dp(z; W(ke)) ga(Ha(ke, jo; x, W(ke)))
— &2(ke)Bz[dL(Z; W (ke)) g2 (Ha(ke, jos X, W (ke)))],
q1(k. 2,2, 1, k') = de(z; W(K)) @1 ((L°(C1(j1)), %)) Bi (ks x, W(k))
— dp(z:W(ke)) o1 ((LO(C1(j1)). D)) Bi (ke: &, W (ke)),
ri(k,z, j1, k') = &1 (ke)dr(z; W(ke)) g1 ((LO(C1(j1)), X)) B (ke; x, W (ke))
— £1(ke)Bz[dL(Z; W(ke)) o1 ((L°(C1(j1)), X)) Bi (ke; X, W (ke))],
where By (k;x, W) = niz Z;.l;:l L, (jo). ke 95 (Ha(k, j2;x, W) wa(k, j2).
By time-interpolation estimates (similar to Claim 1 in the full-rank case) and Assumption ??, we have:

[wa(Lt/€], j2) = Wal(t, j2)| < Kglgz [02.1(Lt/€l, j2) + Q20 (L /€], j2)]| + 1Ky,

|W1(|_l/€_],j1,k) - wl(t’jlv k)| < Kj1<rglzli)<(k<r [Ql,l(l_t/EJ9jlsk) + QI,Z(Lt/EJ’jl’k)] + 1K€,

where:
Lt/e]-1
02,1(Lt/el, j2) = € lg2(€, z(€), z(£), j2)l,
=0
Lt/e]-1
022(Lt/€], j2) = |€ r2(L, z(£), j2)|
=0
Lt/€]-1
Ql,l(l_t/EJ’jl’k) =€ |C]1(£’Z(€)’Z(€)»jlsk)|,
=0
Lt/e]-1
O1,2(Lt/el, j1, k) = |e ri(€,z(£), j1, k)|.
=0

Bounding the terms: For Q05 i, using Assumption ?? and the low-rank structure:
lg2(€, 2(€),2(0), j2)| < K|dL(2(£); W(£)) = dr(z(€); W(Ce))]
+K|dp(z(0); W(Ce))| Ha (L, jo3 x(£), W(0) = Ha (e, jo3 x(0), W(Le))|

< K Dre (W, W) + K, D" Lcy(jo) .kl max [wi (€, j1, k) = w1 (Le, 1, k)]
=l Ji1sn
< K (1+7K) D (W, W),
which yields:
Lt/e]-1
max 02.1(L1/€], j2) < Ki(1+7rK)e Dee (W, W).
2N =0

For Q01,1, similarly:

lg1(€,2(€),z(€), j1, k)| < K|dp(z(€); W(£)) = dr.(z(£); W(Le))| Bi(€;x(€), W(L))]
+K|dp(z(€); W(¢e))| Bi(£;x(£), W(L)) = Bi(Le; x(€), W(Le))|
<K/(1+rK)Dpe (W, W),

which yields:
lt/e]-1
max  Qy1(lt/€l, ji.k) < K (1+7rK)e Dee (W, W).

J1<n1,1<k<r =
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For 0, and Q) », we use martingale concentration. The martingale differences are bounded: |r2 (¢, z(€), j2)| < K,
and |ry (¢, z(£), j1, k)| < K; (1 + rK) almost surely by Assumption ?? and the low-rank structure. Then by martingale
concentration inequalities:

. &
P C,j2) 2€) <2 ——;
(213(2 (?G{O,IR.%%T/E} Q22(L, J2) §) 72 €Xp ( Kr(T +1)e

. &
P max max C, 71, k) > <2nmrexp|-— .
(j1<n1,1<k<r€€{0,1 ..... T/e}Ql’Q( j1:k) §) " p( Kr(1+rK)X(T +1)e

Putting everything together: All the above results give us:

lt/e]-1
Dit/eje W, W) < Kr(1+rK)e Dee (W, W) +& +TKre, Vi <T,
(=

which holds with probability at least:

£ £
L amrex (_KT(l +rKR(T + 1)e) T e (_m) .

The above event implies, by Gronwall’s lemma:

Dr(W, W) < (& +¢e)ekr+K)

Choosing & = K7 (1 +rK)~/(T + 1)elog(2n1nyr/8) completes the proof. O

G.6 Discussion: Width Requirement and Exponential Factor

The bound in Theorem ?? shows that the approximation error scales as:

1 3(T + Dn?
W,W < KT(l+rK) l 1/2 max .
D1 ( )<e =" Ve | log e

For typical values 7 < 10, K ~ 1, < 100, and € ~ 0.001, we have K7(1+7K) < 1000 (roughly), so eK7(1+7K) < 1000,
which is an extremely large exponential factor. This reflects the worst-case scenario where all r channels must
be learned simultaneously. However, in practice, channel specialization enables a more favorable learning regime:
channels progressively capture different frequency components, avoiding the worst-case exponential scaling. The actual
convergence rate is determined by the favorable loss landscape structure (see Section ??) rather than this worst-case
bound.

The key qualitative insight is that the error decreases as np;, increases, with rate O (1/+4/nni,) independent of data
dimension d. The exponential factor eX7+7K) reflects the multi-channel structure but does not dominate in practice
due to channel specialization.

Empirical validation in [?] confirms that networks with width ~ 1000 trained on high-dimensional real-world data (e.g.,
d =~ 1000) exhibit mean-field behaviors, supporting our theoretical prediction that the required width is independent of
d.

H Channel-wise partial functions

This section rewrites the r channel summaries m (¢; -) as integrals against a measure i on the untrained first-layer features,
together with a pushforward that incorporates the trained first-layer weights w1. Let wq : Q; —¢ denote the untrained
first-layer map (in the main text, wo = L) and let p! be the law of C. Define the pushforward uo = (wq)gp' on ¢. For
eacht > 0and k € {1,...,r}, the signed measure ,utl’k = (wo)s(wi(t,-, k) p') satisfies ,ui’k(dé?) =wy (2, 0) uo(do)
with w ¢ (¢, 6) the conditional average of wi(t,-, k) given wo(c1) = 6. Then mg(t; X, W) = ﬁ, v1(6X) y’l’k(de) =

Ji w1k (2,0) 1(6X) po(d6).
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H.1 Time variation of the » partial functions and the induced PDE

Define fi(t,x) = mp(t;x,W) = ﬁwl,k(z,e) ©1(0x) po(dl). From the MF ODE (2??), with Bi(#;X) =c,
[Lcy.k @5 (Ha (2, Co; X, W(2))) wa(t, C2)], the coefficient field evolves as

Wi k(t,0) = —&1(t) z=(x.v) |dL(Z; W (1)) 1(6X) Bi(£; X)] - 9
Differentiating under the integral and defining K, (x,x") = ﬁ, ©1(0x) p1(6x") up(do) yields
O, fie(t,x) = =61(0) z=(x) [dL(Z: W () Bx (5 X) Ky (0, X) ], k=1,....7. (10)

For ReLU @2 (1) = uy, Br(t; X) =¢c, [Lc,,x w2(t, C2) {Ha(t, C2; X, W(t)) > 0}]. In a one-spike reduction at x, with
fi(t) = fi(t,xx), d(t) = dp ((x4, yx); W(t)), the dynamics are

Or fic(t) = =&1(2) d(t) B (1), (11)
Oywa(t,c2) = =& (1) d(t) (Lo, f(1)) (12)

with
By (1) =c, [Lcyx wa(t, C2) {Lc, f(1) > 0}], k=1,...,r. (13)

Under Assumption ?? (symmetric independent coordinates of L, ), nonnegative w» (0, -) and d(¢) < 0, a one-sparse
initial f(0) = age; stays one-sparse: f(t) = a(t)e; with a(t) > ag, Bx(t) = 0for k # j, and B;(t) > 0 (Lemma ??).
Half-space symmetry gives [U {aU > 0}] = sign(a) %[|U|] (Lemma ??).

Assumption H.1 (Random mixing vector, symmetric and independent). The random vector Lc, = (Lc,.1, ..., Lc,r)

. . . d
has independent coordinates, each symmetric about 0: Lc, x = —Lc, x and [LZC2 ] < oo forall k.

Lemma H.1 (Half-space symmetry identities). Let U be a real random variable with U 2 _Uand [|U|] < oo. Then
forany a € \{0}, [U {aU > 0}] = sign(a) %[|U|]. If [U?] < o, then [U? {aU > 0}] = %[Uz].

Lemma H.2 (One-sparse invariant manifold and emergent sign-coherence). Assume the one-spike system above,

Assumption??, d(t) < 0on [0,T], wa(0,c3) = wg > 0, and f(0) = ape; withay > 0. Then forallt € [0,T]: f(1) =
0 L .

a(t)e; with a(t) > ao; Br(t) =0 for k # j; Bj(t) > 0 with B;(t) = %[chMl] + # fot & (s) (=d(s)) a(s) ds;

and d,a(t) > 0.

H.2 Finite-support reduction and scalar ODEs

The kernel K,,, and the evolution (??) are derived in the preceding section. For the two-point support {xo,x1},
K, (x0, x1) is positive and fastly decaying in 6: 0 < K, (x0,x1) < (8) with (6) — O rapidly as § — oo, which holds
for such NNGP kernels in 1D or under suitable geometry. The positivity reinforces the leading local term; the fast decay
keeps the non-local remainder small.

Finite-support data. Assume the input marginal is supported on x(1), ... x(") with (X = x(P)) = 7, and targets
y(P). Set dy(t) = dp ((xP), yP)); W(r)) and By p(t) = By (t;x(P)). Then (??) becomes
m
i1 i (1,6) = =£1(1) ) mp dp(1) Bip (1) 1 (0xP),  k=1,...r. (14)
p=1

Integrating in time yields wi (¢, 6) = w1 £ (0, 6) — Z?:l ©1(6xP)) Ik, p () with

t
i p(t) = / E1(s) mp dp(s) Bi,p(s) ds. (15)
0
Plugging into fj gives the explicit superposition
fiet,) = fe(0,) = 3" T p () Ky (e, xP), k=1, (16)
p=1

The spike shape is determined by K,,,; all learning dynamics reduce to the scalar coefficients I'y , (¢).

0°
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One-spike reduction. If m = 1 with x(!) = x,, then fi(t,x) = fi(0,x) = T 1 () Ky (x, x4). For fi(0,-) = 0, fi(t,)
is exactly a kernel bump at x,. and spike learning reduces to solving I'x 1 (¢).
Two-sided step (m = 2). Takex) =xg=—6,x? =x; =+6 (6 > 0), y) = +A, y® = —A. Then

Ji(t,x) = fi(0,x) = T, 1 (1) Ky (x,%0) — T 2(2) Ky (X, x1).

The kernel K,,, (NNGP, [?]) satisfies K, (xp,xp) = Ko > 0 for p € {0,1}, and the off-diagonal K, (xo,x1) =
K, (=0, +6) is positive and fastly decaying in ¢: 0 < K, (x0,x1) < ¢ (6) with ¢ (6) — O rapidly as 6 — co. The full
evolution is

atfk(t’xp) ==¢1(1) Kuo(xp’xp) dp (1) By, p+1 (1) + Ep(t)’
with |E, (¢)| < C" y(6) for ¢ (0) fastly decaying in 8. The positivity of K, (xo,x1) gives even better positivity in the
log-ratio; the fast decay keeps the remainder small. This is the setting of Theorem ??.

H.3 Proof of Theorem ?? (two-sided step, x()

We prove the theorem at xp; the argument at x| is symmetrical.

At xo. By the log-ratio derivative identity at x,

sign(f1) /i sign(2) 6, /2
|fil 1Al

Insert the full evolution (2?): 0, fi (¢, x0) = —&1 Ky, (X0, X0) do Bi,1 + Eo(t) with |Eg(f)| < C" () for y () fastly
decaying in §. Then

0:R12(t,x0) =

sign(f1)B1,1  sign(f2)Ba .
BiR12(1,%0) = €1(1) Ky (x0, %0) (=do(0) - )+e0(),  leo(0] < C7uo),
/1] [ /2]
where go(t) = Ey(t) (% - %) inherits the bound from Ej,. Use —dyp > 0. The sign condition gives
sign(fi1)B1.1 = |B1,1]; —sign(f2)B2,1 = —|B2,1|. The dominance inequality at xg is [B2,1| < po % |B1,1], hence
[Bial sign(f2)B21 _ |Bial |Bail |B1.1l
/1] [ /2] | f1l /2] | f1l
[B1il

so 0;R12(t,x0) = (1 = po) &1 Kyyy (x0,%0) (—=do) 7Tt go(t). The leading term is > 0; since K, (xp,x1) > 0 and
fastly decaying, the off-diagonal coupling reinforces the leading term (even better positivity) while |gg| < C” ¢ (9) is
negligible for § large. Thus d; R (%, xp) = 0 whenever the leading term dominates |&g|.

At x;. The same argument applies by symmetry (indices 152, xg <> x1): channel 2 dominates at x| and 9, Ry (¢, x1) >
0.

Conclusion. The log-ratio R at x( is non-decreasing on I; strict dominance of channel 1 at xo cannot be lost and is
amplified whenever |Bj ] is not too small. By symmetry, channel 2 dominates at x;.

H.4 On the hypothesis: when (i)—(iii) hold in practice

The hypothesis of Theorem ?? is conditional: (i) —do(f) = 0, (ii) Bj(¢) has the same sign as fi(#,xp), and

(iii) |B2,1 ()] < po % |B1,1(#)| for some pg € [0, 1). In practice, these conditions are observed to hold in standard

training setups. Under Xavier initialization (or similar scale-corrected schemes) for the frozen feature and mixing
matrices, and sub-Gaussian initialization for the trainable weights w1, w», the initial f; and backprop signals By ,, are
well-balanced across channels. The gradient-flow dynamics then tend to amplify small asymmetries: once one channel
leads at xg, (ii) and (iii) are maintained because the dominant channel receives a larger By and thus a larger 9, fi, while
the weaker channel’s backprop stays proportionally smaller. Condition (i) holds when the network under-predicts at
xo; for squared loss dy, o< $ —y, —dy > 0 corresponds to $(xg) < y(xg) = +A, which is typical before convergence.
The same reasoning applies for non-convex losses such as cross-entropy: the loss derivative has a different form, but
under-prediction at a class boundary and emergent sign-coherence under gradient flow still yield (i)—(iii) on an interval /
in common regimes. Thus, although the theorem does not prove (i)—(iii) from first principles, they are consistent with
and typically observed under Xavier and sub-Gaussian initialization and under losses including cross-entropy, which are
standard in practice.
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I Additional Experimental Details

L1 Dataset
Target:  f(x) = cos(fimx?) — 0.8cos(fomx?) on [—1,1], symmetric in x. We use (fi,f2) €

{(36,12),(72,24), (144,48)} with training sizes 1000, 2000, 4000 and test sizes 1234, 2468, 4936. Train: uni-
form grid; test: different distribution. Sample count scales with frequency to match Nyquist density.

1.2 Hyperparameters

Table 4: Hyperparameters. Main runs: batch 100; we also try 50 and 200.

Hyperparameter Values
Architecture
Depth L 8 layers
Width n 1024 neurons per layer
Activation Leaky ReLU
Rank r {10, 15,20, 25, 50, 100, 1024}
fixWb True (frozen), False (trainable)
Optimization
Optimizer Adam
Learning rate 0.001 (initial)
Scheduler StepLR (y = 0.9, step_size=100)
Gradient clipping max_norm=1.0
Batch size {50, 100,200}
Training epochs 10,000 (all runs)
Data

Frequency pairs (f1, f2)
Training samples

Test samples

Input domain

(36,12), (72,24), (144,48)
1000, 2000, 4000 (by frequency)
1234, 2468, 4936 (by frequency)
xe[-1,1]

Training Details
Random seed
Device
Checkpointing
Evaluation frequency

42

CUDA (GPU)
Every 500 epochs
Every 50 epochs

Roughly 90 configurations (rank, fixWb, frequency, batch size); 10k epochs, no early stopping.

L3 Plots and log-ratio setup
We plot loss and error evolution, final predictions vs. target, and layer-wise channel partials (up to 36 per layer) to

inspect hierarchical frequency learning (Section ??). Log-ratio (Figure ??): 3-layer, n=1024, r=15, cos(8zx); SGD Ir
0.01, batch 160, 10k epochs; heatmap of R; ; at x=0.
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