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Abstract
This work studies the training dynamics of low-rank neural networks with frozen random features
in the mean-field regime. When the mean-field dynamics converges, the limit is shown to be a
global minimizer; this holds for gradient-based training under standard independent and identically
distributed initialization, despite low-rank constraints and nonconvex loss functions. By explicitly
incorporating low-rank structure into the network architecture, a tractable mean-field evolution system
is derived. Its well-posedness is established, and it is shown that with frozen random features 𝐿0,
frozen mixing matrices 𝐿 (ℓ ) , and only the channel weights 𝑤ℓ trained, the universal approximation
property is preserved while the learning dynamics are simplified. The analysis identifies a rank-
channel feature learning mechanism, in which different low-rank channels specialize to distinct spatial
locations and progressively capture higher-frequency components. This mechanism explains both the
persistence of global convergence and the emergence of hierarchical frequency learning. Numerical
experiments demonstrate that low-rank networks achieve faster convergence and higher accuracy on
highly oscillatory targets, while using substantially fewer parameters than full-rank networks.
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1 Introduction

Neural networks have achieved remarkable success across a wide range of applications, including computer vision,
natural language processing, scientific computing, and data-driven modeling. These advances have reshaped modern
machine learning practice and enabled solutions to problems that were previously considered intractable. Despite
this empirical success, theoretical understanding of neural network training remains limited. A central difficulty
lies in the highly non-convex nature of the learning landscape. For most architectures and problem settings, the
optimization process is poorly understood: it is generally unclear why gradient-based methods succeed in practice, how
representations evolve during training, or under what conditions convergence can be guaranteed. As a result, much of
current understanding relies on empirical observations rather than rigorous analysis.
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Figure 1: Architecture of a three-layer low-rank random feature network. The first layer consists of frozen random
features, the second layer employs a low-rank mixing matrix 𝐿 of rank 𝑟 ≪ 𝑁 , and the third layer contains trainable
weights 𝑤2. The red dashed box highlights the low-rank bottleneck that reduces dimensionality from 𝑁 to 𝑟 channels.

However, full-rank models are heavily over-parameterized. The number of trainable parameters and the associated
computational cost can be far larger than what is effectively needed to represent the target function. From both
computational and modeling perspectives, it is natural to seek more structured and efficient alternatives. Low-rank neural
networks offer such a possibility by reducing parameter redundancy and computation while retaining expressive power.
As illustrated in Figure ??, low-rank models achieve comparable or better training loss with 99% fewer parameters than
full-rank networks.
This raises a fundamental question: is low rank all we need for global convergence ? Low-rank networks factorize
weights as𝑊 = 𝐿𝑅⊤ with 𝑟 ≪ min{𝑛, 𝑚}, substantially reducing parameters; when such factorizations replace full-rank
matrices, can gradient-based training still converge to a global minimizer, or is full rank essential? It is unclear whether
the favorable optimization and convergence properties of full-rank mean-field analyses extend to this setting. We
therefore conduct a systematic theoretical investigation of low-rank neural networks from optimization and representation
learning: This question is resolved in the present work, as summarized by the following informal theorem.

Theorem 1.1 ((informal) Convergence to a global minimizer for any depth with i.i.d. init.). For any depth 𝐿 ≥ 2,
low-rank random feature networks with standard initialization and non-negative loss function, and if the weights in
all layers (𝑤1, . . . , 𝑤𝐿−1) converge as 𝑡 → ∞, then the limit is a global minimizer of the population loss.

Theorem ?? is an informal statement of the main convergence result proved rigorously in Theorem ??. Beyond global
convergence, the analysis further establishes a hierarchical frequency learning phenomenon for low-rank neural networks,
revealing how learned representations are organized across different low-rank channels. The main contributions of this
work are summarized as follows.

• Global convergence under low-rank constraints (Theorem ??). It is shown that when the dynamics of
low-rank random feature neural networks converges, it converges only to global minimizers of the population
loss, for any depth 𝐿 ≥ 2 under standard independent and identically distributed initialization. Unlike previous
full-rank analyses, the result requires no special or ad-hoc initialization.

• Mean-field feature learning (Theorem ??). A theoretical characterization of feature learning mechanism
is established. A rigorously analyzed toy model demonstrates that each low-rank channel learns a spatially
localized feature at a distinct location. The spatial features distribution (Figure ??) is an important diagnostic
for this mechanism and is strongly confirmed through numerical experiments.

On MNIST, low-rank networks with frozen random features reach ∼97% test accuracy with 13k–31k trainable parameters,
while matching a ReLU MLP at ∼98% when all parameters are trained (Table ??).
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Table 1: MNIST: MLP baseline vs low-rank vs random features; LR = low-rank, RF = frozen random features.

Model Rank Trainable Test acc (%)
MLP – 669,706 98.39
RF-LR 5 7,695 93.72
RF-LR 10 10,260 96.24
RF-LR 15 12,825 96.97
RF-LR 25 17,955 97.00
RF-LR 50 30,780 97.01
LR Only 32 440,362 98.30

Numerical experiments confirm that this theoretical structure translates into practical benefits. On highly oscillatory
function, low-rank networks achieve substantially faster convergence and significantly higher accuracy, reaching MSE
∼ 10−6, compared to approximately 10−5 for full rank networks. At the same time, the number of trainable
parameters is reduced by 95%–99% These results suggest a fundamental insight into the loss landscape: appropriately
structured low-rank parameterizations can improve optimization behavior, rather than merely restricting expressivity.
The remainder of the paper is organized as follows. Section ?? reviews related work. Section ?? presents the main
theoretical results and proof ideas. Section ?? studies hierarchical frequency learning and channel specialization.
Section ?? reports numerical experiments, and Section ?? concludes.

1.1 Related work

Mean-Field Theory for Neural Networks Mean-field theory rigorously analyzes neural network training dynamics
in the large-width limit (typically 𝑁 ≥ 1000 neurons per layer). In this regime, the empirical distribution of
parameters evolves deterministically, leading to powerful tools for understanding optimization and generalization.
Foundational results by [?], [?], [?], and [?] established global convergence for two-layer networks under convex loss
assumptions—crucially leveraging convexity to guarantee that all stationary points are global minimizers.
Progress beyond the convex case has accelerated. [?] proved global convergence for three-layer networks without
assuming convex loss functions. Mean-field analyses of residual networks [?] and multilayer networks [?] further clarify
when global optima arise from stationary points, but these results so far apply only to full-rank networks. Whether such
convergence persists in computationally efficient, low-rank architectures remained open.
We address this gap: we train only the right factor 𝑅, keeping 𝐿 frozen as random features—avoiding both RGD and
the full-rank mean-field collapse to one parameter per intermediate layer under i.i.d. initialization [?]. By leveraging
frozen random features, we prove that channel feature learning (in which 𝑟 independent channels capture hierarchical
frequency structure) leads to both global convergence and practical representational learning.
The present analysis extends the framework of Chizat and Bach [?] (Theorem 2: if the initial support spans R𝑑+1 and
Ψ is positively 2-homogeneous, any weak limit of the Wasserstein gradient flow is a global minimizer) to low-rank,
multi-layer networks. We build on [?, ?].
A key theoretical advance is the elimination of ad-hoc initialization. For standard fully-connected or convolutional
networks, [?] prove that under i.i.d. initialization and constant initial biases the mean-field limit collapses: at each
intermediate layer the weight dynamics reduces to a single deterministic translation parameter (independent of neuronal
indices). To obtain global convergence they therefore require an ad-hoc initialization that avoids this degeneracy. We
do less by way of initialization—we impose an architectural restriction (frozen random features and low-rank layers)
and assume only standard i.i.d. initialization—and prove more: frozen random features ensure supp(𝐿0 (𝐶1)) = R𝑑

throughout training, so the dynamics does not collapse and standard i.i.d. suffices; when the dynamics converges, the
limit is a global minimizer for arbitrary depth 𝐿 ≥ 2. See Remark ?? and [?] for the full-rank setting.

Low-Rank and Random Features Our RF-LR architecture is based on [?]. Low-rank methods such as LoRA [?] are
widely used; most theory focuses on expressivity rather than training dynamics. [?] study end-to-end low-rank training
via reparameterization gradient descent (RGD); we train only post-activation parameters and freeze the other factor as
random features. That choice yields convergence only to global minimizers and clarifies channel feature learning: each
channel specializes to distinct spatial and frequency patterns.
Random features provide a bridge between neural networks and kernel methods. In the mean-field width limit, fixing the
first layer as random features connects the network to kernel methods governed by the neural tangent kernel (NTK) [?],
offering tractable analyses of optimization and generalization. Our architecture embraces this by freezing the first-layer
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weights, so that low-rank mixing layers can learn task-specific representations atop a fixed random feature basis. Recent
work establishes that low-rank structure suffices for the MLP NTK [?], while our results extend this to mean-field
dynamics and global convergence. Together, these advances show that, both in NTK and mean-field regimes, low-rank
networks can match the optimization guarantees of their full-rank counterparts.

2 Main Results and Proof Ideas

2.1 Low-Rank Random Feature Architecture

We consider a low-rank random feature (RF-LR) network architecture. Let ℎ (0) (𝑥) = 𝑥 ∈ R𝑑0 . For layers ℓ = 1, . . . , 𝐿:

ℎ (ℓ ) (𝑥) = 1
𝑛ℓ

𝑛ℓ∑︁
𝑗=1
𝑤

(ℓ )
𝑗
𝜑ℓ

(
𝐿
(ℓ )⊤
𝑗

ℎ (ℓ−1) (𝑥) + 𝑏 (ℓ )
𝑗

)
+ 𝑐ℓ , (1)

where 𝑛ℓ is the width of layer ℓ, 𝑤 (ℓ )
𝑗

∈ R𝑑ℓ are trainable coefficient vectors, 𝐿 (ℓ )
𝑗

∈ R𝑑ℓ−1 and 𝑏 (ℓ )
𝑗

∈ R are frozen
random features (i.i.d. uniform or Gaussian), and 𝑐 is a trainable scalar output bias. The 1/𝑛ℓ scaling ensures a
well-defined mean-field width limit. In the mean-field width limit (typically 𝑁 ≥ 1000 neurons per layer), where 𝑁
denotes the width of each layer, under the mean-field parameterization with i.i.d. initialization (uniform or Gaussian),
the empirical distribution of weights converges to a deterministic measure-valued evolution.

Training policy: 𝑤 (ℓ ) and 𝑐ℓ are trained; 𝐿 (ℓ ) and 𝑏 (ℓ ) are frozen random draws. In the mean-field formulation, biases
𝑏
(ℓ )
𝑗

are encoded by augmenting the input data with a constant component (adding 1 to the input vector).

2.2 Mean-Field Forward Equations

We use the neuronal embedding framework of [?]: each neuron is indexed by a label 𝐶 lying in a probability space
(countable or uncountable), which we specify when sampling or constructing the network. In the finite-width case, 𝐶
corresponds to discrete neuron indices; in the mean-field limit, 𝐶 runs over the support of a measure, and expectations
𝐶 [·] replace empirical averages over neurons.

Definition. We define the mean-field forward pass layer by layer. The frozen first-layer feature map is 𝐿0 (𝑐1) ∈ R𝑑0 ;
we specify the law of 𝐿0 (𝐶1) when sampling the network. In layers 𝑖 ≥ 2, the low-rank structure is given by a frozen
mixing matrix 𝐿 (entries 𝐿𝑐2 ,𝑘 , or 𝐿 (𝑖)

𝑐𝑖 ,𝑘
for intermediate layers), also fixed random features drawn at initialization; we

call it mixing in those layers. All other layer-wise quantities are defined exactly as follows.

• Input (𝑖 = 0): ℎ0 (𝑋) = 𝑋 ∈ R𝑑0 ; no neuronal index.

• Hidden (𝑖 = 1, . . . , 𝐿 − 1): Index 𝐶𝑖 . At 𝑖 = 1: frozen 𝐿0 (𝑐1); 𝐻1 = 𝐿0 (𝐶1)𝑋; 𝑓 (1)
𝑘

=𝐶1 [𝑤1 𝜑1 (𝐻1)]. For
𝑖 ≥ 2: 𝐻𝑖 =

∑
𝑘 𝐿

(𝑖)
𝑐𝑖 ,𝑘

𝑓
(𝑖)
𝑘

with 𝑓
(𝑖)
𝑘

=𝐶𝑖−1 [𝑤𝑖−1 𝜑𝑖−1 (𝐻𝑖−1)]. Activation 𝜑𝑖 (𝐻𝑖).
• Output (𝑖 = 𝐿): 𝑦̂ =𝐶𝐿−1 [𝑤𝐿−1 𝜑𝐿−1 (𝐻𝐿−1)].

2.3 Mean-Field Backward Equations (ODEs)

The mean-field ODE system (backward equations) for the weights takes the form, for all layers 𝑖 = 1, . . . , 𝐿 − 1:

𝜕𝑡𝑤1 (𝑡, 𝑐1, 𝑘) = −𝜉1 (𝑡) 𝑍 [𝑑𝐿 𝜑1 (𝐿0𝑋) 𝐵 (2)
𝑘

],
𝜕𝑡𝑤𝑖 (𝑡, 𝑐𝑖) = −𝜉𝑖 (𝑡) 𝑍 [𝐷𝑖 𝜑𝑖 (𝐻𝑖 (𝑡, 𝑐𝑖; 𝑋,𝑊))],

(2)

where 𝑍 [·] denotes expectation over 𝑍 = (𝑋,𝑌 ); 𝑑𝐿 (𝑍;𝑊 (𝑡)) = 𝜕𝑦̂ℒ(𝑌, 𝑦̂(𝑋;𝑊 (𝑡))) is the loss derivative; 𝜉𝑖 (𝑡) ≥ 0
are the learning-rate schedules. In (??), 𝐷𝐿−1 = 𝑑𝐿 ; for 𝑖 ≤ 𝐿 − 2, 𝐷𝑖 is the back-propagated pre-activation gradient at
𝐻𝑖 [?]:

𝐷𝑖 = 𝜑
′
𝑖 (𝐻𝑖)

∑︁
𝑘

𝑤𝑖 𝐶𝑖+1 [𝐷𝑖+1 𝐿
(𝑖+1)
𝐶𝑖+1 ,𝑘

]

𝐷𝐿−1 = 𝑑𝐿 𝑤𝐿−1 𝜑
′
𝐿−1 (𝐻𝐿−1).

(3)

The channel-wise backpropagated signals are

𝐵
(ℓ )
𝑘

(𝑡; 𝑋,𝑊) =𝐶ℓ

[
𝐿
(ℓ )
𝐶ℓ ,𝑘

𝜑′ℓ (𝐻ℓ (𝑡, 𝐶ℓ ; 𝑋,𝑊)) 𝑤ℓ (𝑡, 𝐶ℓ)
]
.
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2.4 Assumptions

The applicability of our results depends crucially on the following assumptions, which we state explicitly in Appendix ??
and are satisfied by standard MLP architectures
The main assumptions are: Bounded Activations and Mixing (Assumption ??), Sub-Gaussian Initialization (Assump-
tion ??), Data Distribution and Loss Regularity (Assumption ??), Diversity of Random Features (Assumption ??),
Non-Degeneracy (Assumption ??), and Training convergence to limit point (Assumption ??). The Non-Degeneracy
assumption requires that the initial loss is better than the trivial zero predictor, ensuring the network learns a non-trivial
solution. The Convergence to Limit Point assumption states that training reaches a limit point, which is a natural
condition for analyzing convergence.
These assumptions are satisfied by Leaky ReLU or sigmoid (or tanh) networks on bounded data with standard
initialization (Gaussian/Xavier): those activations have 𝜑′ bounded and bounded away from zero, and bounded inputs
plus Gaussian/Xavier fulfill the remaining regularity, sub-Gaussian, and non-degeneracy conditions; for ReLU, the same
holds with high probability in 𝑟 (Appendix ??).

2.5 Mean-Field ODEs are well posed

We establish well-posedness of the mean-field ODE system (??) by adapting the proof from [?] to account for the
low-rank structure.

Theorem 2.1 (Well-posedness of mean-field ODEs). Under Bounded Activations and Mixing (Assumption ??),
Sub-Gaussian Initialization (Assumption ??), Data Distribution and Loss Regularity (Assumption ??), and Diversity
of Random Features (Assumption ??), there exists a unique solution to the mean-field ODE system (??) on 𝑡 ∈ [0,∞).

Proof sketch. We first states the bi-Lipschitz property of 𝐻ℓ and 𝜑ℓ (𝐻ℓ) in𝑊 (Lemma ??, Appendix ??): |𝐻ℓ (𝑊 ′) −
𝐻ℓ (𝑊 ′′) | and |𝜑ℓ (𝐻ℓ (𝑊 ′)) − 𝜑ℓ (𝐻ℓ (𝑊 ′′)) | are bounded by 𝐾 ∥𝐿 (ℓ ) ∥∞,1 ≤ 𝑟𝐾 times weight differences. This is the
simple but key adaptation to the low-rank case. From this, we adapt and introduce weight-space Orlicz sub-gaussian
norms accounting for the 𝑟 channels (max1≤𝑘≤𝑟 over channel index 𝑘 , see Appendix ??), update 𝐾0 (𝑡) with a factor
(1 + 𝑟𝐾)1/2, establish sub-Gaussian a priori bounds with 𝑟-factors, and show the solution operator 𝐹 is contractive in
these spaces; Banach fixed point yields existence and uniqueness. Details in Appendix ??. □

2.6 Global convergence

Frozen random features with full support supp(𝐿0 (𝐶1)) = R𝑑 ensure that {𝜑1 (⟨𝐿0 (𝑐1), ·⟩) : 𝑐1 ∈ Ω1} has dense span
in 𝐿2 (P𝑋) when 𝜑1 is non-polynomial (e.g. Leaky ReLU or sigmoid); 𝜑1 (𝑎 𝑓 + 𝑏) for random 𝑎, 𝑏 then forms a dense
span. This property is maintained throughout training because 𝐿0 (𝐶1) are frozen. For well-posedness (Theorem ??),
each 𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊) bi-Lipschitz in𝑊 is sufficient and equivalent to 𝜑ℓ Lipschitz; it is the only thing that matters. After
defining norms, we update 𝐾0 (𝑡) with a factor (1 + 𝑟𝐾)1/2; the solution operator 𝐹, a priori bounds, and the contraction
argument then proceed as in the full-rank framework [?].

Theorem 2.2 (RF-LR training only converges to global minimizers). Under all assumptions from Bounded
Activations and Mixing (Assumption ??) through Convergence to Limit Point (Assumption ??), and the loss
condition in Data Distribution and Loss Regularity (Assumption ??) (𝜕2L = 0 ⇒ L = 0), if the mean-field
dynamics for low-rank random feature networks converges, then it is to a global minimizer of the population loss:
lim𝑡→∞𝑊 (𝑡) = 𝑊∗ where𝑊∗ minimizes ℒ. For any depth 𝐿 ≥ 2, this holds with standard i.i.d. initialization.

Equivalently, any limit point of the mean-field dynamics is a global minimizer of the population loss under the loss
condition in Assumption ??.

High-level proof idea (improving [?], Sec. 6.2.1). At a limit point 𝑊̄ , the gradient-flow ODE has zero time derivative.
For the top layer (and, by backprop, at each layer), this yields 𝑍 [upstream × local] = 0 over the support of the layer’s
neuron measure. The crucial step: if the first-layer features {𝜑1 (⟨𝜃, ·⟩) : 𝜃 ∈ supp(feature measure)} have dense span in
𝐿2 (P𝑋), then one deduces 𝑍 [𝜕𝑦̂ℒ(𝑌, 𝑦̂(𝑋; 𝑊̄)) | 𝑋 = 𝑥] = 0 for P𝑋-a.e. 𝑥. Under the loss condition in Assumption ??,
E[𝜕2L(𝑌, 𝑢) |𝑋 = 𝑥] = 0 implies E[L(𝑌, 𝑢) |𝑋 = 𝑥] = 0, so ℒ(𝑊̄) = 0 and 𝑊̄ is a global minimizer.
In [?], the first-layer weights 𝑤1 are trained, so supp(𝑤̄1 (𝑈1)) = R𝑑 at the limit may fail (e.g., solutions may become
sparse or concentrated). Their proof therefore relies on a homotopy argument to show that supp(𝑤1 (𝑡,𝑈1)) = R𝑑 is
preserved for all finite 𝑡 ≥ 0, so the limit retains enough richness.
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Figure 2: Low-rank (rank 𝑟=10) vs full-rank (𝑟=1024) on 𝑦 = cos(2𝜋𝑥), 𝑥 ∈ [−1, 1], 3 layers, width 1024, 𝑛=5000,
batch=4, SGD lr 0.01 with red-bar decay. (momentum 𝜂 ∈ {0, 0.3, 0.6, 0.7}) and one full-rank (𝜂=0). Red bars: SGD lr
reductions for 𝜂=0. Low-rank uses 99% fewer parameters and vanilla SGD performs best.

We freeze the feature maps 𝐿0 (𝐶𝑖) for all layers 𝑖; they are not trained, so supp(𝐿0 (𝐶𝑖)) = R𝑑 for every 𝑖 and all 𝑡,
and {𝜑𝑖 (⟨𝐿0 (𝑐𝑖), ·⟩) : 𝑐𝑖 ∈ Ω𝑖} has dense span in 𝐿2 (P𝐻𝑖−1 ) for every layer. Thus we can apply the global-optimality
argument of [?] without the homotopy step: at a limit point, zero derivative plus dense span at each layer gives
𝑍 [𝜕𝑦̂ℒ | 𝑋 = 𝑥] = 0 a.e. and hence a global minimizer. The low-rank form (𝐻𝑖 =

∑
𝑘 𝐿𝑐𝑖 ,𝑘 𝑓𝑘 , etc.) only changes

upstream and local terms; the gradient-flow logic is unchanged. For 𝐿 ≥ 3, the layer-by-layer argument works by virtue
of the frozen 𝐿0. Unlike full-rank 𝐿 ≥ 3, which requires ad-hoc init to avoid collapse, we need only standard i.i.d. init
(Remark ??).

Remark 2.1 (Avoiding ad-hoc initialization). Full-rank 𝐿 ≥ 3 needs ad-hoc init in [?] (else intermediate layers
collapse). Frozen 𝐿0 keeps supp(𝐿0 (𝐶1)) = R𝑑 , so standard i.i.d. suffices and any limit is a global minimizer.

2.7 Quantitative Guarantees

We provide a quantitative approximation theorem that bounds the error between finite-width networks and the mean-field
limit. The detailed proof are provided in Appendix ??; here we summarize the key result.

Theorem 2.3 (Finite-width approximation error bound). Given a family Init of initialization laws and a tuple {𝑛1, 𝑛2}
that is in the index set of Init, perform the coupling procedure for the low-rank architecture as described in Section ??.
Fix a terminal time 𝑇 ∈ 𝜖N≥0. Under Assumptions ??, ?? (see Appendix ??), and the low-rank structure with mixing
matrix 𝐿 satisfying ∥𝐿∥∞,1 ≤ 𝑟𝐾 , for 𝜖 ≤ 1, we have with probability at least 1 − 2𝛿,

𝒟𝑇 (𝑊,W) ≤ 𝐶exp · 𝐶width · 𝐶log,

where 𝐶exp = 𝑒𝐾𝑇 (1+𝑟𝐾 ) , 𝐶width = 1/√𝑛min +
√
𝜖 , 𝐶log =

√︁
log(3(𝑇 + 1)𝑛2

max/𝛿 + 𝑒), with 𝑛min = min{𝑛1, 𝑛2},
𝑛max = max{𝑛1, 𝑛2}, 𝐾𝑇 = 𝐾 (1 + 𝑇𝐾 ), and the factor (1 + 𝑟𝐾) accounts for the low-rank structure through
∥𝐿∥∞,1 ≤ 𝑟𝐾 .

Training in practice. The theorem (Appendix ??) links W(⌊𝑡/𝜖⌋) to𝑊 (𝑡) with error 𝑂 (1/√𝑛min +
√
𝜖), independent

of 𝑑; proof in Appendix. The factor (1 + 𝑟𝐾) in the Grönwall constant 𝑒𝐾𝑇 (1+𝑟𝐾 ) arises in the ODE drift bounds (from
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the 𝑟 channels and ∥𝐿∥∞,1 ≤ 𝑟𝐾) and is then exponentiated by Grönwall; vs. full-rank [?] one has 𝑒𝐾𝑇 (1+𝑟𝐾 ) instead of
𝑒𝐾𝑇 . Worst-case, the bound is exponential in 𝑟𝐾; in practice, channel specialization often restricts to a subset and yields
faster convergence (future work, Section ??).

3 Feature Learning

The low-rank structure enables channel feature learning where different channels learn different spatial-frequency
features. In particular, each channel learns a spike at a different spatial value (localization): e.g. channel 𝑘 dominates
near some 𝑥𝑘 while others remain small there. Empirically, channels also separate by frequency—lower frequencies are
captured first, higher ones progressively—so that the 𝑟 channels jointly provide both spatial localization and frequency
separation. Theorem ?? below provides a rigorous, conditional characterization of how channels establish and maintain
dominance (when the stated hypothesis holds on an interval 𝐼), explaining the feature learning in practice.
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𝑥
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Figure 3: Channel spike learning (Theorem ??). Functions 𝑓1 (𝑥) (blue) and 𝑓2 (𝑥) (red) at 𝑡0, 𝑡0 + Δ𝑡, and 𝑡1. 𝑓1 has a
spike at 𝑥0 that becomes more pronounced over time, while 𝑓2 has no spike.

3.1 Mechanism of Spike Learning

The log-ratio growth in Theorem ?? arises from a self-reinforcing dominance loop. The evolution 𝜕𝑡 𝑓𝑘 (𝑡, 𝑥) =

−𝜉1 (𝑡) 𝑍=(𝑋,𝑌 ) [𝑑𝐿 (𝑍;𝑊 (𝑡)) 𝐵𝑘 (𝑡; 𝑋) 𝐾𝜇0 (𝑥, 𝑋)] is an integral over the data distribution, where 𝑘 ∈ {1, . . . , 𝑟} is the
channel index and 𝐾𝜇0 (𝑥, 𝑋) is the kernel. When channel 𝑘 dominates at 𝑥0,

𝐻2 =

𝑟∑︁
𝑗=1

𝐿𝑐2 , 𝑗 𝑓 𝑗 = 𝐿𝑐2 ,𝑘 𝑓𝑘︸  ︷︷  ︸
large

+
∑︁
𝑗≠𝑘

𝐿𝑐2 , 𝑗 𝑓 𝑗︸       ︷︷       ︸
small

,

so the pre-activation and hence 𝜑′2 (𝐻2) (bounded away from zero under Assumption ??) are effectively driven by that
channel. The backpropagated signal 𝐵𝑘 (𝑡; 𝑋) =𝐶2 [𝐿𝐶2 ,𝑘 𝑤2 (𝑡, 𝐶2) 𝜑′2 (𝐻2 (𝑡, 𝐶2; 𝑋))] is a mixture over the second
layer. The precise signs of 𝐿𝑐2 ,𝑘 or 𝑤2 (𝑡, 𝑐2) need not matter: once a channel dominates, the activation derivative 𝜑′2
modulates the contribution (e.g. by half-space for Sigmoid/ReLU/Leaky ReLU), 𝑤2 evolves on that set via the mean-field
𝑤2-ODE, and the dynamics create an emergent sign-coherence rather than requiring it a priori. If the activation (gate) is
correlated with a channel, that correlation amplifies: the channel gets a larger 𝐵𝑘 , hence a larger 𝜕𝑡 𝑓𝑘 , so the channel and
the gate become even more correlated. Under sign-coherence (𝐵𝑘,1 has the same sign as 𝑓𝑘), the integral contribution
from the dominant channel is larger, yielding a single self-reinforcing loop: larger dominance → larger 𝐵𝑘 → larger
𝜕𝑡 𝑓𝑘 → further amplified dominance. Theorem ?? shows that when the conditions (i)–(iii) in its hypothesis hold on an
interval 𝐼, this loop implies 𝜕𝑡𝑅12 ≥ 0 and thus that dominance cannot be lost on 𝐼; see Appendix ??.

3.2 Toy model with spike feature learning

The full mean-field system for discrete regression in Spatial-Fourier space is infinite dimensional; the two-point (𝑚 = 2)
dynamics nonetheless capture the essential mechanism for feature learning. We state and prove this intuition for the
two-sided step toy model: 𝑚 = 2 support points 𝑥 (1) = 𝑥0 = −𝛿, 𝑥 (2) = 𝑥1 = +𝛿 (𝛿 > 0) with 𝑦 (1) = +𝐴, 𝑦 (2) = −𝐴.
The target 𝑦(𝑥) is supported on {𝑥0, 𝑥1} with values ±𝐴 (Figure ??). For finitely-supported data, the 𝑤1-evolution is
linear in feature space once residuals and backprop signals are fixed; one obtains closed-form 𝑓𝑘 as a superposition of
kernel bumps. Define 𝑑𝑝 (𝑡) = 𝑑𝐿 ((𝑥 (𝑝) , 𝑦 (𝑝) );𝑊 (𝑡)), 𝐵𝑘, 𝑝 (𝑡) = 𝐵𝑘 (𝑡; 𝑥 (𝑝) ), and

Γ𝑘, 𝑝 (𝑡) ≡
∫ 𝑡

0
𝜉1 (𝑠) 𝑑𝑝 (𝑠) 𝐵𝑘, 𝑝 (𝑠) 𝑑𝑠.

Then
𝑓𝑘 (𝑡, 𝑥) = 𝑓𝑘 (0, 𝑥) − Γ𝑘,1 (𝑡) 𝐾𝜇0 (𝑥, 𝑥0) − Γ𝑘,2 (𝑡) 𝐾𝜇0 (𝑥, 𝑥1). (4)
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𝑥

𝑦

𝑥0 =−𝛿

𝑥1 =+𝛿

+𝐴

−𝐴

(𝑥0 , +𝐴)

(𝑥1 , −𝐴)

Figure 4: Two-sided step: 𝑥0 = −𝛿, 𝑥1 = +𝛿 with 𝑦(𝑥0) = +𝐴, 𝑦(𝑥1) = −𝐴.

The spike shape is determined by 𝐾𝜇0 ; all learning dynamics reduce to the scalar coefficients Γ𝑘,1 (𝑡), Γ𝑘,2 (𝑡). The
kernel 𝐾𝜇0 (NNGP, [?]) satisfies 𝐾𝜇0 (𝑥𝑝 , 𝑥𝑝) = 𝐾0 > 0 for 𝑝 ∈ {0, 1} (same by symmetry). The off-diagonal
𝐾𝜇0 (𝑥0, 𝑥1) = 𝐾𝜇0 (−𝛿, +𝛿) is positive and fastly decaying in 𝛿: 0 < 𝐾𝜇0 (𝑥0, 𝑥1) ≤ 𝜓(𝛿) for some 𝜓(𝛿) with 𝜓(𝛿) → 0
rapidly as 𝛿 → ∞. Thus the cross-term is small for separated points and, being positive, reinforces the leading local
term and yields even better positivity in the log-ratio dynamics.
The full evolution has two terms (local plus non-local):

𝜕𝑡 𝑓𝑘 (𝑡, 𝑥𝑝) = −𝜉1 (𝑡) 𝐾𝜇0 (𝑥𝑝 , 𝑥𝑝) 𝑑𝑝 (𝑡) 𝐵𝑘, 𝑝+1 (𝑡) + 𝐸𝑝 (𝑡), (5)

where the non-local remainder 𝐸𝑝 (𝑡) satisfies |𝐸𝑝 (𝑡) | ≤ 𝐶′ 𝜓(𝛿) with 𝜓(𝛿) fastly decaying in 𝛿. We state the theorem
for 𝑥0 only; the result is symmetrical at 𝑥1 (Appendix ??).

Figure 5: Trajectory of max𝑖, 𝑗 𝑅𝑖, 𝑗 (𝑥 = 0) vs. epoch (layer-3 channels). Channel specialization at 𝑥 = 0 as in Theorem ??.
Setup: 𝑛 = 1024, 𝑟 = 15, cos(8𝜋𝑥), 20 epochs.

Theorem 3.1 (Two-sided step: log-ratio growth at 𝑥0 (conditional)). Setting: The two-sided step with 𝑟 = 2 channels
and a 3-layer RF-LR; the dynamics are (??) and the full evolution (??). The result is conditional: if the three
conditions in (Hypothesis) hold on an interval 𝐼 ⊆ [0,∞), then the stated conclusion holds on 𝐼.

Definition (log-ratio criterion). At 𝑥0: 𝑑0 (𝑡) is the residual and 𝐵𝑘,1 (𝑡) = 𝐵𝑘 (𝑡; 𝑥0) the backprop signal; at 𝑥1:
𝑑1 (𝑡) and 𝐵𝑘,2 (𝑡) = 𝐵𝑘 (𝑡; 𝑥1). Define

𝑅12 (𝑡, 𝑥0) = log
| 𝑓1 (𝑡, 𝑥0) |
| 𝑓2 (𝑡, 𝑥0) |

.

And under the hypothesis that backpropagated signals are stable Hypothesis (at 𝑥0, for all 𝑡 ∈ 𝐼): (i) −𝑑0 (𝑡) ≥ 0;
(ii) 𝐵1,1 (𝑡) has the same sign as 𝑓1 (𝑡, 𝑥0); (iii) there exists 𝜌0 ∈ [0, 1) such that |𝐵2,1 (𝑡) | ≤ 𝜌0

| 𝑓2 (𝑡 ,𝑥0 ) |
| 𝑓1 (𝑡 ,𝑥0 ) | |𝐵1,1 (𝑡) |.
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Figure 6: Log-ratios 𝑅𝑖, 𝑗 at 𝑥 = 0 over training (all activation pairs; layer-2 𝐻𝑘).

Conclusion: For 𝑡 ∈ 𝐼,

𝜕𝑡𝑅12 (𝑡, 𝑥0) = (1 − 𝜌0) 𝜉1 (𝑡) 𝐾𝜇0 (𝑥0, 𝑥0) (−𝑑0 (𝑡))
|𝐵1,1 (𝑡) |
| 𝑓1 (𝑡, 𝑥0) |

+ 𝜀0 (𝑡),

with |𝜀0 (𝑡) | ≤ 𝐶′′ 𝜓(𝛿) for 𝜓(𝛿) fastly decaying in 𝛿 (from 𝐸𝑝). Hence 𝜕𝑡𝑅12 (𝑡, 𝑥0) ≥ 0 whenever the leading term
dominates |𝜀0 |; since 𝐾𝜇0 (𝑥0, 𝑥1) > 0, the off-diagonal coupling contributes with a favorable sign and reinforces the
leading term, yielding even better positivity. Strict dominance of channel 1 at 𝑥0 cannot be lost on 𝐼 and is amplified
whenever |𝐵1,1 | is not too small. The result is symmetrical at 𝑥1 (channel 2 dominates there).

Remark 3.1 (On the hypothesis). The theorem does not assert that (i)–(iii) hold for the canonical two-sided step
(𝑦 = ±𝐴 at 𝑥 = ±𝛿) from generic initial conditions; it only establishes that when they hold on 𝐼, the conclusion
follows. Verifying (i)–(iii) from the ODEs for specific initial conditions and 𝐴, 𝛿 is outside the scope of this result.
See Appendix ?? for a discussion of when (i)–(iii) hold in practical settings.

Proof sketch. The proof is deferred to Appendix ?? and only uses eq:dtfk-full-delta and the log-ratio calculus at 𝑥0. □

4 Numerical Results

font=small Our experiments focus on 1-dimensional data for three reasons: (i) large sample sizes ensure that convergence
of 𝑍 [·] is achieved, so optimization dynamics are not confounded by overfitting or sample complexity; (ii) the frequency-
dependent target 𝑓 (𝑥) = cos( 𝑓1𝜋𝑥2) − 0.8 cos( 𝑓2𝜋𝑥2) on [−1, 1] provides a controlled setting to study hierarchical
frequency learning, with a direct link to the two-sided step and Theorem ??; (iii) 1D allows clear interpretability of
channel specialization (spatial location and frequency) and of the log-ratio evolution.

4.1 Log-ratio growth and spike features

We validate our theoretical predictions on frequency-dependent function approximation. Assumption ?? (Appendix ??)
requires 𝜑′2 bounded away from zero and thus excludes ReLU; in practice this can be relaxed with high probability,
exponentially in 𝑟 (Appendix ??). We train 3-layer low-rank ReLU networks on 𝑓 (𝑥) = cos(8𝜋𝑥) with 𝑛 = 1024
neurons, 𝑟 = 15 channels, and 𝑁 = 5000 samples. At 𝑥 = 0 we measure layer-2 low-rank channels 𝑓𝑘 , log-ratios
𝑅𝑖, 𝑗 = log | 𝑓𝑖 | − log | 𝑓 𝑗 |, and pre-activations 𝐻𝑘 (with 𝐻2 revealing the half-space separation that drives spike learning).
We track max𝑖, 𝑗 𝑅𝑖, 𝑗 (𝑥 = 0) during training (Figure ??) and the distribution over all pairs (Figure ??); the sustained
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Figure 7: Final prediction vs. target 𝑓 (𝑥) = cos(36𝜋𝑥2) − 0.8 cos(12𝜋𝑥2). 4-layer, 𝑛=1024, 𝑟=50, 𝑁=1000, RF-LR
MSEs are within 10−8 to ∼ 10−4

Figure 8: Asymmetry when RF is removed (a) (b) Asym. Layer 7. (c) Asym. Layer 16; 𝑟=20. (b)–(c) ; 𝑓1 = 144,
𝑓2 = 48.

Figure 9: (symmetric) with bigger spikes. (a) 𝑓 (5)1 . (b) ReLU(𝐻8) (c) ReLU(𝐻16).
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Table 2: Hyperparameters for all figures in this section. Symmetry runs (Figs. ??, ??, ??) and Fig. ??: Adam [?], batch
100, lr 0.001, 𝛾=0.9 every 100 steps; test 4936 for symmetry. Log-ratio (Figs. ??, ??): SGD, lr 0.01, batch 160. Target
( 𝑓1, 𝑓2) denotes 𝑓 (𝑥) = cos( 𝑓1𝜋𝑥2) − 0.8 cos( 𝑓2𝜋𝑥2) on [−1, 1].

Figure 𝐿 𝑛 𝑟 Target 𝑁train Epochs batch RF

??, ?? 3 1024 15 cos(8𝜋𝑥) 5k 10k 160 –
?? 4 1024 8 (36,12) 2k 5k 100 True
?? 8 1024 15 (144,48) 4k 10k 100 True
?? 8 1024 20 (144,48) 4k 10k 100 False
?? 4 1024 50 (36,12) 1k 1k 100 False

growth indicates that one channel increasingly dominates at 𝑥 = 0, consistent with Theorem ??. The mean-field weight
distribution over training is shown in Figure ??, and spike-like specialization in Figure ??(a). Experimental setup and
further details are in Appendix ??.

4.2 Channel and activations learn symmetric spikes

We examine symmetry preservation by RF-LR on highly oscillating targets. Under batched optimization, markedly
non-symmetrical features can be learned for symmetric targets. Specifically, all our targets are symmetric about
𝑥 = 0 since both terms are even in 𝑥. When trained with SGD, low-rank networks maintain this symmetry, whereas
full-rank networks show asymmetric structures. Channel feature learning in low-rank networks thus preserves geometric
properties of the target, likely due to the implicit regularization of the low-rank constraint.

5 Conclusion

We have shown that when the mean-field dynamics converges, the limit is a global minimizer; this persists under
low-rank constraints for mean-field networks of depth 𝐿 ≥ 2. Recent work has established convergence to a global
minimizer for full-rank three-layer networks without assuming loss convexity, but it remained open whether these
guarantees hold for more layers. Our key insight is that the low-rank and random features structure are minimal to
maintain the universal approximation property throughout training, which preserves the conditions needed for the limit
to be a global minimizer when training converges.
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Figure 10: 𝑤2 density at epoch 0 (top) and symmetric at 50 (bottom).

A Appendix Overview: Our Results and Their Correspondence to Nguyen et al.

This section lists all lemmas, theorems, and corollaries in our appendix and, for each, states the corresponding result in
[?] of which it is an adaptation. Our proofs follow their structure and are modified to account for the low-rank mixing
𝐻ℓ =

∑𝑟
𝑘=1 𝐿

(ℓ )
𝑐ℓ ,𝑘

𝑓
(ℓ )
𝑘

, the ∥𝐿 (ℓ ) ∥∞,1 ≤ 𝑟𝐾 bounds, and the max1≤𝑘≤𝑟 over channels in norms.

Assumptions. Our Assumptions ??–?? (Appendix ??) and ?? (Appendix ??) adapt the forward, backward, init,
lrSchedule, and neuronal-embedding assumptions and the initialization/regularity framework in [?]. The low-rank
mixing bound in ?? and their diversity-of-random-features assumption are specific to our RF-LR setting.
Theorem ?? and Appendices ?? and ?? are original to this work.

Reference: Nguyen et al. In [?], thm/lem/prop/cor share one counter. Main text (proofs in appendix): Lemma
8 (bounds MF a priori), Lemma 10 (difference MF). Appendix: Theorems 43–45; Lemmas 46–49 (Lipschitz
forward/backward MF, general); Lemmas 50–53 (square Hoeffding; initialization compare; bounds NN a priori; a priori
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Table 3: Our appendix lemmas/theorems/corollary and the Nguyen et al. [?] result each adapts.

Ours Type One-line statement Adaptation of (Nguyen et al.)
?? Lemma Bi-Lipschitz of 𝐻ℓ , 𝜑ℓ (𝐻ℓ) in

𝑊 with ∥𝐿 (ℓ ) ∥∞,1 ≤ 𝑟𝐾 .
Lemmas 46, 48 (Lipschitz for-
ward MF, -general)

?? Lemma A priori𝑊𝑡 ≤ 𝐾0 (𝑡) with (1 +
𝑟𝐾)1/2 factor.

Lemma 8 (bounds MF a priori)

?? Lemma 𝐹 (W0
𝑇
) ⊆ W0

𝑇
. Invariance in proof of Theorem

7 (existence ODE)
?? Lemma Solution operator 𝐹 contrac-

tive in ∥ · ∥𝑡 .
Lemma 10 (difference MF)

?? Lemma Sub-Gaussian bounds for∑
𝑘 𝑎𝑘𝑈𝑘 (low-rank sums).

Lemma 51, Theorem 45 (ini-
tialization compare, iid-hilbert-
higher-moment)

?? Lemma |𝐻2 |, | 𝑓𝑘 | bounds scale with
∥𝐿∥∞,1.

Lemma 48 (Lipschitz forward
MF - general)

?? Lemma Moment bounds for 𝐻2 =∑
𝑘 𝐿𝑐2 ,𝑘 𝑓𝑘 .

Lemma 52 (bounds NN a priori)

?? Lemma 𝒟𝑇 (𝑊, 𝑊̃) ≤ · · · 𝑒𝐾𝑇 (1+𝑟𝐾 ) . Proposition 22 (particle cou-
pling - bounded)

?? Lemma 𝒟𝑇 (𝑊̃,W) ≤ · · · 𝑒𝐾𝑇 (1+𝑟𝐾 ) . Proposition 23 (gradient descent
- bounded)

?? Theorem Dense span {𝜑1 (⟨𝐿0 (𝑐1), ·⟩)}
maintained (frozen 𝐿0).

Assumption (diversity); no di-
rect lemma (specific to frozen
RF)

?? Theorem 𝒟𝑇 (𝑊,W) ≤ 𝐶exp · 𝐶width ·
𝐶log.

Corollary 17 and full quantita-
tive framework

?? Corollary |E𝑍 [𝜓(𝑌, ŷ)] −
E𝑍 [𝜓(𝑌, 𝑦̂)] | ≤ · · · .

Corollary 17 (gradient descent
quality)

MF time difference); Theorem 54 (iid dynamics-full); Lemma 55 (full-support-2); Propositions 22, 23 (particle coupling
bounded; gradient descent bounded); Corollary 17 (gradient descent quality).

B Notation and Neuronal Embedding Framework

We keep the notation and neuronal embedding framework of [?]. In the mean-field framework, neurons are indexed by
continuous random variables rather than discrete indices. This neuronal embedding approach treats each neuron as a
sample from a probability measure, enabling rigorous analysis in the infinite-width limit.
Neuronal indices: We use 𝐶1 ∈ C1 and 𝐶2 ∈ C2 to denote random variables indexing neurons in the first and second
layers, respectively. These are drawn from probability measures 𝜇1 and 𝜇2 on spaces C1 and C2. In the finite-width case,
𝐶1 ( 𝑗1) and 𝐶2 ( 𝑗2) correspond to countable or uncountable neuron indices 𝑗1 ∈ {1, . . . , 𝑛1} and 𝑗2 ∈ {1, . . . , 𝑛2}.
Weight functions: The weights are functions of time and neuronal indices:

• 𝑤1 (𝑡, 𝐶1, 𝑘) ∈ R: weight for channel 𝑘 ∈ {1, . . . , 𝑟} of neuron 𝐶1 in the first layer at time 𝑡.
• 𝑤2 (𝑡, 𝐶2) ∈ R: weight for neuron 𝐶2 in the second layer at time 𝑡.
• 𝑊 (𝑡) = (𝑤1 (𝑡, ·, ·), 𝑤2 (𝑡, ·)): the full weight configuration at time 𝑡.

Feature maps and activations:

• 𝐿0 (𝐶1) ∈ R𝑑0 : frozen random feature vector for neuron 𝐶1 (drawn i.i.d. from a Gaussian measure); we specify
the law of 𝐿0 (𝐶1) when sampling the network.

• 𝜑1 : R → R: activation function for the first layer (e.g., Leaky ReLU or sigmoid).
• 𝜑2 : R → R: activation function for the second layer.
• 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 (𝑡)) =

∑𝑟
𝑘=1 𝐿𝑐2 ,𝑘 𝑓𝑘 (𝑡; 𝑋,𝑊 (𝑡)): second-layer pre-activation, where 𝑓𝑘 (𝑡; 𝑋,𝑊 (𝑡)) =𝐶1

[𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (𝐿0 (𝐶1)𝑋)] are the channel-wise partial functions.
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Backpropagation signal (all layers): The gradient 𝜕ℒ/𝜕𝑤 at each layer is (upstream backpropagated signal) × (local
derivative). Deriving 𝜕𝑡𝑤 from −𝜉 𝑍 [· · · ] at each layer yields:

• Top layer (layer 𝐿 − 1): The backpropagated signal from the loss is 𝐷𝐿−1 = 𝑑𝐿 = 𝜕𝑦̂ℒ(𝑌, 𝑦̂(𝑋;𝑊 (𝑡))); it is
used in the 𝑤𝐿−1-ODE.

• Channel-𝑘 signal from layer ℓ to the layer below (ℓ = 2, . . . , 𝐿 − 1): 𝐵
(ℓ )
𝑘

(𝑡; 𝑋,𝑊) =𝐶ℓ

[𝐿 (ℓ )
𝐶ℓ ,𝑘

𝜑′
ℓ
(𝐻ℓ (𝑡, 𝐶ℓ ; 𝑋,𝑊)) 𝑤ℓ (𝑡, 𝐶ℓ)], 𝑘 ∈ {1, . . . , 𝑟}. This aggregates gradient information from layer ℓ

through the mixing matrix 𝐿 (ℓ ) and the activation derivative 𝜑′
ℓ
; for Leaky ReLU, 𝜑′

ℓ
(𝑢) = 1{𝑢 > 0}+𝛼1{𝑢 ≤ 0}

with 𝛼 ∈ (0, 1). In the 3-layer case, 𝐵𝑘 := 𝐵 (2)
𝑘

.

Loss and learning rates:

• 𝑑𝐿 (𝑍;𝑊 (𝑡)) = 𝜕𝑦̂ℒ(𝑌, 𝑦̂(𝑋;𝑊 (𝑡))): loss derivative with respect to the network output, where 𝑍 = (𝑋,𝑌 ) is
a data sample and 𝑦̂(𝑋;𝑊 (𝑡)) is the network output.

• 𝜉1 (𝑡), 𝜉2 (𝑡) ≥ 0: learning rate schedules for the first and second layers, respectively.

Kernel function:

• 𝐾𝜇0 (𝑥, 𝑋): kernel that measures similarity between input locations 𝑥 and 𝑋 , induced by the untrained first-layer
feature measure 𝜇0 (the pushforward of the initial first-layer weights). It is defined by

𝐾𝜇0 (𝑥, 𝑥′) ≡
∫

𝑑

𝜑1 (𝜃𝑥) 𝜑1 (𝜃𝑥′) 𝜇0 (𝑑𝜃).

For Leaky ReLU or sigmoid 𝜑1 and 𝜇0 the pushforward of i.i.d. Gaussian or uniform-on-sphere first-layer
weights, 𝐾𝜇0 coincides with the first-layer NNGP kernel [?]. This kernel appears in the evolution equation for
the partial functions 𝑓𝑘 (𝑡, 𝑥).

Expectations: 𝑍 [·] denotes expectation over the data distribution, 𝐶1 [·] over the first-layer neuron measure, and 𝐶2 [·]
over the second-layer neuron measure.

C Assumptions

This section contains the complete statement of all assumptions used in our theoretical analysis. These assumptions are
referenced in the main text with their names in italics.

Assumption C.1 (Bounded Activations and Mixing). There exists a constant 𝐾 ≥ 1 such that:

• Activation functions: 𝜑1 and 𝜑2 are 𝐾-Lipschitz; ∥𝜑′2∥∞ ≤ 𝐾; and 𝜑′2 is bounded away from zero, i.e.
inf𝑢 |𝜑′2 (𝑢) | ≥ 1/𝐾 . For well-posedness, 𝜑ℓ (𝐻ℓ) must be bounded in the analysis; this holds for sigmoid
and tanh (∥𝜑ℓ ∥∞ ≤ 𝐾); for Leaky ReLU 𝜑(𝑢) = max(𝑢, 𝛼𝑢) with 𝛼 ∈ (0, 1), 𝜑 is unbounded but 𝜑(𝐻ℓ)
is bounded when pre-activations 𝐻ℓ are (as in our a priori ODE bounds). ReLU is excluded because 𝜑′
vanishes on (−∞, 0]. For ReLU and a high-probability relaxation in practice, see Appendix ??.

• Low-rank mixing matrix: The mixing matrix entries 𝐿𝑐2 ,𝑘 are random variables (e.g., Uniform) with
sup𝑐2 ,𝑘 |𝐿𝑐2 ,𝑘 | ≤ 𝐾 almost surely, and 𝑘 ↦→ 𝐿𝑐2 ,𝑘 is measurable for each 𝑐2. This implies ∥𝐿∥∞,1 ≡
sup𝑐2

∑𝑟
𝑘=1 |𝐿𝑐2 ,𝑘 | ≤ 𝑟𝐾 almost surely.

Assumption C.2 (Sub-Gaussian Initialization). The initial weights satisfy sub-Gaussian moment bounds:

• For the first-layer weights: sup𝑚≥1
1√
𝑚

max1≤𝑘≤𝑟 𝐶1

[
|𝑤0

1 (𝐶1, 𝑘) |𝑚
]1/𝑚 ≤ 𝐾 for some 𝐾 > 0.

• For the second-layer weights: sup𝑚≥1
1√
𝑚𝐶2

[
|𝑤0

2 (𝐶2) |𝑚
]1/𝑚 ≤ 𝐾 .

• Equivalently, in terms of 𝜓2 norms: ⟦𝑤1 (0)⟧𝜓 < ∞ and ⟦𝑤2 (0)⟧𝜓 < ∞, where ⟦·⟧𝜓 denotes the 𝜓2 norm
controlling moment growth.
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This ensures that the initial weight distributions have controlled tail behavior, which is essential for the well-posedness
argument.

Assumption C.3 (Data Distribution and Loss Regularity). • Bounded inputs: |𝑋 | ≤ 𝐾 with probability 1,
and the feature map satisfies ∥𝐿0 (𝑐1)∥ ≤ 𝐾 for all 𝑐1 ∈ Ω1.

• Loss: 𝜕2L(𝑦, ·) is 𝐾-bounded and 𝐾-Lipschitz for all 𝑦 in the support of P (for well-posedness and
continuity of ℒ). Loss condition: 𝜕2L(𝑦, 𝑦̂) = 0 implies L(𝑦, 𝑦̂) = 0. For non-negative L, whenever
E[𝜕2L(𝑌, 𝑢) |𝑋 = 𝑥] = 0 we then have E[L(𝑌, 𝑢) |𝑋 = 𝑥] = 0, so the first-order condition identifies global
minimizers. Examples: MSE (𝜕2L = 0 iff 𝑦̂ = 𝑦, and L(𝑦, 𝑦) = 0); many classification losses.

Assumption C.4 (Diversity of Random Features). The support of 𝜌1 (the measure on Ω1 indexing the first-layer
random features) is 𝑑 (or dense in 𝑑). This ensures that the random features {𝜑1 (𝐿0 (𝑐1)·) : 𝑐1 ∈ Ω1} have dense
span in 𝐿2 (P𝑋), which is essential for the universal approximation property.

Assumption C.5 (Non-Degeneracy). To ensure that the limit point (𝑤̄1, . . . , 𝑤̄𝐿) is non-degenerate (e.g.,
max1≤𝑘≤𝑟 (𝑤̄1 (𝐶1, 𝑘) ≠ 0) > 0 for the first layer and (𝑤̄ℓ (𝐶ℓ) ≠ 0) > 0 for ℓ = 2, . . . , 𝐿), we require one
of the following:

1. The initial loss satisfies ℒ(𝑤0
1, . . . , 𝑤

0
𝐿
) <𝑍 [L(𝑌, 𝜑𝐿 (0))]. Then by the gradient flow property, the

limit point must have non-zero mass for each of 𝑤̄1, . . . , 𝑤̄𝐿 (e.g. max1≤𝑘≤𝑟 (𝑤̄1 (𝐶1, 𝑘) ≠ 0) > 0 and
(𝑤̄ℓ (𝐶ℓ) ≠ 0) > 0 for ℓ = 2, . . . , 𝐿), so (𝑤̄1, . . . , 𝑤̄𝐿) is non-degenerate. This condition requires that
the initial network performs better than the trivial predictor 𝑦̂ = 0, which is satisfied for most reasonable
initializations (e.g., small random weights) with high probability.

Theorem C.1 (Universal approximation automatically maintained). The learning trajectory automatically maintains
the universal approximation property of the function class represented by the first layer’s neurons throughout training.
Specifically, if supp(𝐿0 (𝐶1)) = R𝑑 and 𝜑1 is Leaky ReLU or sigmoid (or any non-polynomial activation), then the
function class {𝜑1 (𝐿0 (𝑐1)·) : 𝑐1 ∈ Ω1} has dense span in 𝐿2 (P𝑋) throughout training.

This follows from the fact that since 𝐿0 (𝐶1) are frozen random features with full support, and Leaky ReLU or sigmoid
is non-polynomial, the dense span property is automatically maintained: 𝜑1 (𝑎 𝑓 + 𝑏) for random 𝑎, 𝑏 always forms a
dense span. This is the key property that, combined with low-rank structure and the loss condition in Assumption ??,
enables convergence to a global minimizer.

Assumption C.6 (Convergence to Limit Point). There exist functions 𝑤̄1 : Ω1 × {1, . . . , 𝑟} → and 𝑤̄2 : Ω2 → such
that as 𝑡 → ∞, there exists a coupling 𝜋𝑡 of 𝜌1 × 𝜌2 and itself such that:∫

(1 + |𝑤̄2 (𝑐2) |) |𝑤̄2 (𝑐2) | max
1≤𝑘≤𝑟

|𝑤̄1 (𝑐1, 𝑘) | |𝑤∗
1 (𝑡, 𝑐

′
1, 𝑘) − 𝑤̄1 (𝑐1, 𝑘) | 𝑑𝜋𝑡 (𝑐1, 𝑐2, 𝑐

′
1, 𝑐

′
2) → 0, (6)∫

(1 + |𝑤̄2 (𝑐2) |) |𝑤̄2 (𝑐2) | |𝑤∗
2 (𝑡, 𝑐

′
2) − 𝑤̄2 (𝑐2) | 𝑑𝜋𝑡 (𝑐1, 𝑐2, 𝑐

′
1, 𝑐

′
2) → 0, (7)

where𝑊∗ (𝑡) = (𝑤∗
1 (𝑡, ·, ·), 𝑤

∗
2 (𝑡, ·)) is the solution to the mean-field ODEs (??). This assumption ensures that the

training dynamics converge to a well-defined limit point in a Wasserstein-like sense.

Remark C.1 (On the assumptions). Universal approximation is automatically maintained (Theorem ??), which
is the crucial difference from previous work. We do not assume loss convexity; the function class maintains its
approximation power throughout training. The frozen random features in the first layer with full support automatically
ensure dense span: since 𝜑1 (𝑎 𝑓 + 𝑏) for random 𝑎, 𝑏 and non-polynomial 𝜑1 (e.g. Leaky ReLU or sigmoid) always
forms a dense span, this property is automatically maintained rather than assumed, providing a rich fixed basis
independent of the low-rank structure in subsequent layers.
The Convergence to Limit Point assumption is typically verified by showing that the loss decreases along trajectories
(gradient flow property), establishing compactness of the trajectory set, and using stability arguments such as
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LaSalle’s invariance principle. The low-rank structure enters through the max𝑘 over 𝑟 channels in (??), but the
overall structure remains similar to the full-rank case.

D Technical Lemmas and Proofs for Well-Posedness

The lemmas below and the techniques underlying the assumptions in the previous section are from the rigorous
mean-field framework of [?]. We adapt them to the low-rank case by accounting for the 𝑟 channels and the mixing
matrix 𝐿 (e.g., through ∥𝐿∥∞,1 ≤ 𝑟𝐾).

D.1 Key New Trick: Bi-Lipschitz Property

Before proving well-posedness, we establish a key technical lemma that will be used throughout the proof.

Lemma D.1 (Bi-Lipschitz property of 𝐻ℓ , ℓ = 2, . . . , 𝐿 − 1). For any 𝑊 ′ = (𝑤′
1, . . . , 𝑤

′
𝐿−1) and 𝑊 ′′ =

(𝑤′′
1 , . . . , 𝑤

′′
𝐿−1) (in the 3-layer case𝑊 = (𝑤1, 𝑤2)) satisfying the regularity assumptions, we have the following for

each ℓ = 2, . . . , 𝐿 − 1.

Layer ℓ = 2.��𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′) − 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′′)
�� ≤ 𝐾 ∥𝐿 (2) ∥∞,1 max

1≤𝑘≤𝑟
𝐶1

[
|𝑤′

1 (𝑡, 𝐶1, 𝑘) − 𝑤′′
1 (𝑡, 𝐶1, 𝑘) |

]
,

where ∥𝐿 (ℓ ) ∥∞,1 ≡ sup𝑐ℓ
∑𝑟
𝑘=1 |𝐿

(ℓ )
𝑐ℓ ,𝑘

| ≤ 𝑟𝐾 under the entrywise bound (𝐿 (2) = 𝐿). If 𝜑2 is Leaky ReLU or Lipschitz,
then ��𝜑2 (𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′)) − 𝜑2 (𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′′))

�� ≤ 𝐾 ∥𝐿 (2) ∥∞,1 max
1≤𝑘≤𝑟

𝐶1

[
|𝑤′

1 (𝑡, 𝐶1, 𝑘) − 𝑤′′
1 (𝑡, 𝐶1, 𝑘) |

]
.

Layers ℓ = 3, . . . , 𝐿 − 1.��𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊 ′)−𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊 ′′)
�� ≤ 𝐾 ∥𝐿 (ℓ ) ∥∞,1

(
𝐶ℓ−1

[
|𝑤′
ℓ−1 (𝑡, 𝐶ℓ−1)−𝑤′′

ℓ−1 (𝑡, 𝐶ℓ−1) |
]
+𝑤′′

ℓ−1𝑡 ·ℬℓ−1 (𝑊 ′,𝑊 ′′)
)
,

where ℬℓ−1 (𝑊 ′,𝑊 ′′) is the RHS of the bi-Lipschitz inequality for 𝐻ℓ−1 above. If 𝜑ℓ is Leaky ReLU or Lipschitz, the
same bound holds for |𝜑ℓ (𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊 ′)) − 𝜑ℓ (𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊 ′′)) |.

Proof. Layer ℓ = 2. By definition 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊) =
∑𝑟
𝑘=1 𝐿𝑐2 ,𝑘 𝑓𝑘 (𝑡; 𝑋,𝑊) with 𝑓𝑘 (𝑡; 𝑋,𝑊) =𝐶1

[𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (𝐿0 (𝐶1)𝑋)]. Then

𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′) − 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′′) =
𝑟∑︁
𝑘=1

𝐿𝑐2 ,𝑘
(
𝑓𝑘 (𝑡; 𝑋,𝑊 ′) − 𝑓𝑘 (𝑡; 𝑋,𝑊 ′′)

)
=

𝑟∑︁
𝑘=1

𝐿𝑐2 ,𝑘𝐶1

[
(𝑤′

1 (𝑡, 𝐶1, 𝑘) − 𝑤′′
1 (𝑡, 𝐶1, 𝑘)) 𝜑1 (𝐿0 (𝐶1)𝑋)

]
.

Taking absolute values and using boundedness of 𝜑1:��𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′) − 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊 ′′)
�� ≤ 𝑟∑︁

𝑘=1
|𝐿𝑐2 ,𝑘 | 𝐶1

[
|𝑤′

1 (𝑡, 𝐶1, 𝑘) − 𝑤′′
1 (𝑡, 𝐶1, 𝑘) |

]
|𝜑1 (𝐿0 (𝐶1)𝑋) |

≤ 𝐾

𝑟∑︁
𝑘=1

|𝐿𝑐2 ,𝑘 | max
1≤𝑘≤𝑟

𝐶1

[
|𝑤′

1 (𝑡, 𝐶1, 𝑘) − 𝑤′′
1 (𝑡, 𝐶1, 𝑘) |

]
≤ 𝐾 ∥𝐿 (2) ∥∞,1 max

1≤𝑘≤𝑟
𝐶1

[
|𝑤′

1 (𝑡, 𝐶1, 𝑘) − 𝑤′′
1 (𝑡, 𝐶1, 𝑘) |

]
.

The 𝜑2 (𝐻2) part follows from the Lipschitz property of 𝜑2.

Layers ℓ ≥ 3. We have 𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊) =
∑𝑟
𝑘=1 𝐿

(ℓ )
𝑐ℓ ,𝑘

𝑓
(ℓ )
𝑘

(𝑡; 𝑋,𝑊) with 𝑓
(ℓ )
𝑘

(𝑡; 𝑋,𝑊) =𝐶ℓ−1

[𝑤ℓ−1 (𝑡, 𝐶ℓ−1, 𝑘) 𝜑ℓ−1 (𝐻ℓ−1 (𝑡, 𝐶ℓ−1; 𝑋,𝑊))] (and 𝑤ℓ−1 (𝑡, 𝐶ℓ−1, 𝑘) ≡ 𝑤ℓ−1 (𝑡, 𝐶ℓ−1) when the layer has no chan-
nel index). Then

𝑓
(ℓ )
𝑘

(𝑊 ′) − 𝑓
(ℓ )
𝑘

(𝑊 ′′) =𝐶ℓ−1

[
(𝑤′
ℓ−1 − 𝑤

′′
ℓ−1) 𝜑ℓ−1 (𝐻ℓ−1 (𝑊 ′)) + 𝑤′′

ℓ−1
(
𝜑ℓ−1 (𝐻ℓ−1 (𝑊 ′)) − 𝜑ℓ−1 (𝐻ℓ−1 (𝑊 ′′))

) ]
.

16



Using |𝜑ℓ−1 | ≤ 𝐾 , |𝜑ℓ−1 (𝑎) − 𝜑ℓ−1 (𝑏) | ≤ 𝐾 |𝑎 − 𝑏 |, and the inductive bound for |𝐻ℓ−1 (𝑊 ′) − 𝐻ℓ−1 (𝑊 ′′) |:

| 𝑓 (ℓ )
𝑘

(𝑊 ′) − 𝑓
(ℓ )
𝑘

(𝑊 ′′) | ≤ 𝐾 𝐶ℓ−1

[
|𝑤′
ℓ−1 − 𝑤

′′
ℓ−1 |

]
+ 𝐾 𝐶ℓ−1

[
|𝑤′′
ℓ−1 | |𝐻ℓ−1 (𝑊 ′) − 𝐻ℓ−1 (𝑊 ′′) |

]
≤ 𝐾 𝐶ℓ−1

[
|𝑤′
ℓ−1 − 𝑤

′′
ℓ−1 |

]
+ 𝐾 𝑤′′

ℓ−1𝑡 ℬℓ−1 (𝑊 ′,𝑊 ′′).

Thus |𝐻ℓ (𝑊 ′) − 𝐻ℓ (𝑊 ′′) | ≤ ∥𝐿 (ℓ ) ∥∞,1 max𝑘 | 𝑓 (ℓ )𝑘
(𝑊 ′) − 𝑓

(ℓ )
𝑘

(𝑊 ′′) | yields the claim. The 𝜑ℓ (𝐻ℓ) part follows from
the Lipschitz property of 𝜑ℓ . □

From here, the proof follows as usual. For each ℓ = 2, . . . , 𝐿 − 1, 𝐻ℓ (𝑡, 𝑐ℓ ; 𝑋,𝑊) bi-Lipschitz in𝑊 is sufficient and
equivalent to 𝜑ℓ Lipschitz; that is the only thing that matters. The remaining is simple: after defining norms, we update
𝐾0 (𝑡) with a factor (1 + 𝑟𝐾)1/2; the solution operator 𝐹, a priori bounds, and the contraction argument then proceed as
in the full-rank framework [?].

D.2 Norms and Spaces

We equip the mean-field parameters with several norms. For the low-rank case: 𝑤1𝑡 =

max1≤𝑘≤𝑟 𝐶1 [sup𝑠≤𝑡 |𝑤1 (𝑠, 𝐶1, 𝑘) |50]1/50, 𝑤2𝑡 =𝐶2 [sup𝑠≤𝑡 |𝑤2 (𝑠, 𝐶2) |50]1/50, 𝑊𝑡 = max(𝑤1𝑡 , 𝑤2𝑡 ). 𝐿2-
type: ∥𝑤1∥𝑡 = max1≤𝑘≤𝑟 𝐶1 [sup𝑠≤𝑡 |𝑤1 (𝑠, 𝐶1, 𝑘) |2]1/2, ∥𝑤2∥𝑡 =𝐶2 [sup𝑠≤𝑡 |𝑤2 (𝑠, 𝐶2) |2]1/2, ∥𝑊 ∥𝑡 =

max(∥𝑤1∥𝑡 , ∥𝑤2∥𝑡 ). 𝜓2-type: ⟦𝑤1⟧𝜓,𝑡 =
√

50 sup𝑚≥1
1√
𝑚

max1≤𝑘≤𝑟 𝐶1 [sup𝑠≤𝑡 |𝑤1 (𝑠, 𝐶1, 𝑘) |𝑚]1/𝑚, ⟦𝑤2⟧𝜓,𝑡 =
√

50 sup𝑚≥1
1√
𝑚𝐶2

[sup𝑠≤𝑡 |𝑤2 (𝑠, 𝐶2) |𝑚]1/𝑚, ⟦𝑊⟧𝜓,𝑡 = max(⟦𝑤1⟧𝜓,𝑡 , ⟦𝑤2⟧𝜓,𝑡 ). The factor
√

50 ensures ⟦𝑊⟧𝜓,𝑡 ≥
𝑊𝑡 and ⟦𝑊⟧𝜓,𝑡 ≥ ∥𝑊 ∥𝑡 . Random variables: max𝑤𝑡 (𝑊) = max1≤𝑘≤𝑟 sup𝑠≤𝑡 |𝑤1 (𝑠, 𝐶1, 𝑘) |, max𝑤2

𝑡 (𝑊) =

sup𝑠≤𝑡 |𝑤2 (𝑠, 𝐶2) |. Distance for𝑊,𝑊 ′:

∥𝑊 −𝑊 ′∥𝑡 = max(∥𝑤1 − 𝑤′
1∥𝑡 , ∥𝑤2 − 𝑤′

2∥𝑡 ), (8)

with ∥𝑤1 − 𝑤′
1∥𝑡 = max1≤𝑘≤𝑟 𝐶1 [sup𝑠≤𝑡 |𝑤1 (𝑠, 𝐶1, 𝑘) − 𝑤′

1 (𝑠, 𝐶1, 𝑘) |2]1/2 and ∥𝑤2 − 𝑤′
2∥𝑡 =𝐶2 [sup𝑠≤𝑡 |𝑤2 (𝑠, 𝐶2) −

𝑤′
2 (𝑠, 𝐶2) |2]1/2.

D.3 Solution Operator and Fixed Point Formulation

Denote by 𝔚𝑇 the space of mean-field parameters 𝑊 with ∥𝑊 ∥𝑇 < ∞. Given 𝑇 ≥ 0 and 𝑊 (0),
we define 𝐹 mapping 𝑊 ′ ∈ 𝔚𝑇 to 𝐹 (𝑊 ′) (𝑡) = {𝐹1 (𝑊 ′) (𝑡, ·, ·), 𝐹2 (𝑊 ′) (𝑡, ·)}, where 𝐹1 (𝑊 ′) (𝑡, 𝑐1, 𝑘) =

𝑤1 (0, 𝑐1, 𝑘) −
∫ 𝑡

0 𝜉1 (𝑠)𝑍 [𝑑𝐿 (𝑍;𝑊 ′ (𝑠)) 𝜑1 (𝐿0 (𝑐1)𝑋) 𝐵𝑘 (𝑠; 𝑋,𝑊 ′ (𝑠))]𝑑𝑠 and 𝐹2 (𝑊 ′) (𝑡, 𝑐2) = 𝑤2 (0, 𝑐2) −∫ 𝑡
0 𝜉2 (𝑠)𝑍 [𝑑𝐿 (𝑍;𝑊 ′ (𝑠)) 𝜑2 (𝐻2 (𝑠, 𝑐2; 𝑋,𝑊 ′ (𝑠)))]𝑑𝑠, with 𝐵𝑘 (𝑠; 𝑋,𝑊 ′) =𝐶2 [𝐿𝐶2 ,𝑘 𝜑

′
2 (𝐻2 (𝑠, 𝐶2; 𝑋,𝑊 ′)) 𝑤′

2 (𝑠, 𝐶2)].
At initialization 𝐹 (𝑊 ′) (0, ·, ·) = 𝑊 (0); the time integrals use 𝑊 ′. A solution on [0, 𝑇] is 𝑊 ∈ 𝔚𝑇 with 𝐹 (𝑊) = 𝑊 .
We say𝑊 is a solution on [0,∞) if its restriction to [0, 𝑇] is a solution for all 𝑇 > 0.

D.4 A Priori Bounds
Lemma D.2 (Weight bounds). Under Assumptions ?? and ??, given an initialization 𝑊 (0), a solution 𝑊 to the
mean-field ODEs, if it exists, must satisfy that for any 𝑡 ∈ [0,∞):

𝑊𝑡 ≤ 𝐾0 (𝑡),

where 𝐾0 (𝑡) is a non-decreasing function of the form

𝐾0 (𝑡) = (1 + 𝑟𝐾)1/2 𝐾 𝜅 (1 + 𝑡𝜅 ) (1 +𝑊 𝜅
0 ),

for some constant 𝜅 > 0 depending on 𝐾 and 𝑟 .

A similar result holds for the 𝜓2 norm. Under the same assumptions, for any 𝑡 ∈ [0,∞), there exists 𝐾0 (𝑡) ≥ 1 of the
form

𝐾0 (𝑡) = (1 + 𝑟𝐾)1/2 𝐾 𝜅 (1 + 𝑡𝜅 ) (1 + ⟦𝑊⟧𝜅𝜓,0),
such that a solution𝑊 , if it exists, must satisfy𝑊𝑡 ≤ ⟦𝑊⟧𝜓,𝑡 ≤ 𝐾0 (𝑡) for any 𝑡 ∈ [0,∞). Furthermore, by assuming
⟦𝑊⟧𝜓,0 < ∞, for any 𝐵 ≥ 0: (

max
(
max𝑤𝑡 (𝑊),max𝑤2

𝑡 (𝑊)
)
≥ 𝐾0 (𝑡)𝐵

)
≤ 𝐶𝑒−𝐾1𝐵

2
,
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for some universal constants 𝐶, 𝐾1 > 0.

Proof. We do not provide this proof here because of conciseness to prove sub-gaussian bounds for trivial lipschiz
variable. The proof follows from Grönwall-type arguments applied to the ODEs (??). The key steps are:

1. Use the boundedness and Lipschitz properties of 𝜑1, 𝜑2, 𝜑′2, and 𝜕2L.

2. Control 𝐻2 using the low-rank structure: |𝐻2 | ≤ ∥𝐿∥∞,1 max𝑘 | 𝑓𝑘 | ≤ 𝑟𝐾 max𝑘 𝐶1 [|𝑤1 (𝐶1, 𝑘) |].

3. Control 𝐵𝑘 using the structure: |𝐵𝑘 | ≤ 𝐾𝐶2 [|𝐿𝐶2 ,𝑘 | |𝑤2 |] ≤ 𝑟𝐾2
𝐶2
[|𝑤2 |].

4. Apply Minkowski’s inequality and Grönwall’s lemma to obtain polynomial growth in 𝑡.

5. The sub-Gaussian tail bound follows from the 𝜓2 control and a union bound.

The constant 𝜅 depends on 𝐾 and 𝑟 through the factor ∥𝐿∥∞,1 ≤ 𝑟𝐾 , but remains polynomial rather than exponential in
𝑟. □

These a priori bounds lead us to consider the following spaces, given an initialization𝑊 (0) and an arbitrary terminal
time 𝑇 > 0:

• The space W𝑇 of mean-field parameters𝑊 ′ = {𝑊 ′ (𝑡)}𝑡≤𝑇 such that𝑊 ′
𝑇 ≤ 𝐾0 (𝑇).

• The space W0
𝑇
⊂ W𝑇 of mean-field parameters𝑊 ′ ∈ W𝑇 such that:

⟦𝑊 ′⟧𝜓,𝑇 ≤ 𝐾0 (𝑇),(
max

(
max𝑤𝑇 (𝑊

′),max𝑤2
𝑇
(𝑊 ′)

)
≥ 𝐾0 (𝑇)𝐵

)
≤ 𝐶𝑒−𝐾1𝐵

2 ∀𝐵 ≥ 0,

and𝑊 ′ (0) = 𝑊 (0) (so all elements in W0
𝑇

share the same initialization).
It is easy to see that W0

𝑇
⊂ W𝑇 since𝑊 ′

𝑇 ≤ ⟦𝑊 ′⟧𝜓,𝑇 .

We equip these spaces with the metric (𝑊 ′,𝑊 ′′) ↦→ ∥𝑊 ′ −𝑊 ′′∥𝑇 . By Lemma ??, any solution𝑊 to the mean-field
ODEs, if it exists, must belong to W0

𝑇
.

Lemma D.3 (Solution operator maps bounded sets to bounded sets). Under Assumptions ?? and ??, for any
𝑊 ′ ∈ W0

𝑇
, we have 𝐹 (𝑊 ′) ∈ W0

𝑇
.

Proof. The proof follows the same argument as Lemma ??, using the integral form defining 𝐹 and the bounded/Lipschitz
properties of the drifts. The key is that applying bounded/Lipschitz drifts to𝑊 ′ preserves the moment and tail bounds
with constants controlled by 𝐾0 (𝑇). □

D.5 Difference Estimate
Lemma D.4 (Solution operator is contractive). For a given 𝐵 ≥ 0, consider two collections of mean-field parameters
𝑊 ′,𝑊 ′′ ∈ W𝑇 such that: (

max
(
max𝑤𝑇 (𝑊

′),max𝑤2
𝑇
(𝑊 ′)

)
≥ 𝐾0 (𝑇)𝐵

)
≤ 𝐶𝑒−𝐾1𝐵

2
,(

max
(
max𝑤𝑇 (𝑊

′′),max𝑤2
𝑇
(𝑊 ′′)

)
≥ 𝐾0 (𝑇)𝐵

)
≤ 𝐶𝑒−𝐾1𝐵

2
.

Under Assumptions ??–??, for any 𝑡 ≤ 𝑇:

∥𝐹 (𝑊 ′) − 𝐹 (𝑊 ′′)∥𝑡 ≤ (𝐾𝐾0 (𝑇))4
∫ 𝑡

0

(
(1 + 𝐵)∥𝑊 ′ −𝑊 ′′∥𝑠 +

√
2𝑒−𝐾1𝐵

2/2
)
𝑑𝑠,

where the constant depends on 𝐾 and 𝑟 through ∥𝐿∥∞,1 ≤ 𝑟𝐾 .

Proof. The proof uses a good/bad event decomposition:

1. On the good event {max(max𝑤
𝑇
,max𝑤2

𝑇
) ≤ 𝐾0 (𝑇)𝐵}, the drifts are Lipschitz in𝑊 with constant (1 + 𝐵)𝐾0 (𝑇).
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2. The difference |𝐻2 (𝑊 ′) − 𝐻2 (𝑊 ′′) | is controlled using Lemma ??:

|𝐻2 (𝑊 ′) − 𝐻2 (𝑊 ′′) | ≤ 𝐾 ∥𝐿∥∞,1 max
𝑘

𝐶1 [|𝑤′
1 (𝐶1, 𝑘) − 𝑤′′

1 (𝐶1, 𝑘) |] ≤ 𝑟𝐾2 max
𝑘

∥𝑤′
1 − 𝑤

′′
1 ∥𝑡 .

3. The difference |𝐵𝑘 (𝑊 ′) − 𝐵𝑘 (𝑊 ′′) | is controlled similarly, giving a factor (1 + 𝐵).

4. The bad event contributes an exponentially small remainder 𝑒−𝐾1𝐵
2/2.

5. Integrating in time and using Minkowski’s inequality yields the result.

□

D.6 Complete Proof of Theorem ??

Proof of Theorem ??. We perform a Picard-type iteration argument. Consider an arbitrary finite 𝑇 ≥ 0 and𝑊 ′,𝑊 ′′ ∈
W0
𝑇

. From Lemma ??:

∥𝐹 (𝑊 ′) − 𝐹 (𝑊 ′′)∥𝑡 ≤ (𝐾𝐾0 (𝑇))4
(
(1 + 𝐵)

∫ 𝑡

0
∥𝑊 ′ −𝑊 ′′∥𝑠𝑑𝑠 + 𝑇

√
2𝑒−𝐾1𝐵

2/2
)

≡ 𝑘1 (1 + 𝐵)
∫ 𝑡

0
∥𝑊 ′ −𝑊 ′′∥𝑠𝑑𝑠 + 𝑘2𝑒

−𝑘3𝐵
2
,

for any 𝐵 > 0, where 𝑘1 = (𝐾𝐾0 (𝑇))4, 𝑘2 = (𝐾𝐾0 (𝑇))4𝑇
√

2, and 𝑘3 = 𝐾1/2.
By Lemma ??, 𝐹 maps W0

𝑇
to W0

𝑇
. We can iterate this inequality to obtain:

∥𝐹 (𝑚) (𝑊 ′) − 𝐹 (𝑚) (𝑊 ′′)∥𝑇 ≤ 𝑘1 (1 + 𝐵)
∫ 𝑇

0
∥𝐹 (𝑚−1) (𝑊 ′) − 𝐹 (𝑚−1) (𝑊 ′′)∥𝑇2𝑑𝑇2 + 𝑘2𝑒

−𝑘3𝐵
2

≤ 𝑘2
1 (1 + 𝐵)2

∫ 𝑇

0

∫ 𝑇2

0
∥𝐹 (𝑚−2) (𝑊 ′) − 𝐹 (𝑚−2) (𝑊 ′′)∥𝑇3 I(𝑇2 ≤ 𝑇)𝑑𝑇3𝑑𝑇2

+ 𝑘2

2∑︁
ℓ=1

(𝑇𝑘1 (1 + 𝐵))ℓ−1

ℓ!
𝑒−𝑘3𝐵

2

. . .

≤ 1
𝑚!
𝑇𝑚𝑘𝑚1 (1 + 𝐵)𝑚∥𝑊 ′ −𝑊 ′′∥𝑇 + 𝑘2𝑒

𝑇𝑘1 (1+𝐵)−𝑘3𝐵
2

≤ 1
𝑚!
𝑇𝑚𝑘𝑚1 (1 +

√
𝑚)𝑚∥𝑊 ′ −𝑊 ′′∥𝑇 + 𝑘2𝑒

𝑇𝑘1 (1+
√
𝑚)−𝑘3𝑚,

where we choose 𝐵 =
√
𝑚 in the last display. Note that since𝑊0 < ∞, 𝐾0 (𝑇) and hence 𝑘1, 𝑘2 are finite for finite 𝑇 .

By substituting𝑊 ′′ = 𝐹 (𝑊 ′), we obtain:
∞∑︁
𝑚=1

∥𝐹 (𝑚+1) (𝑊 ′) − 𝐹 (𝑚) (𝑊 ′)∥𝑇 =

∞∑︁
𝑚=1

∥𝐹 (𝑚) (𝑊 ′′) − 𝐹 (𝑚) (𝑊 ′)∥𝑇 < ∞.

Hence as 𝑚 → ∞, 𝐹 (𝑚) (𝑊 ′) converges in ∥ · ∥𝑇 to a limit 𝑊 ∈ 𝔚𝑇 , which is a fixed point of 𝐹. By Lemma ??, 𝑊
belongs to W0

𝑇
.

The uniqueness of the fixed point comes from the above estimate, since if𝑊 ′ and𝑊 ′′ are fixed points of 𝐹, then they
are both in W0

𝑇
, and:

∥𝑊 ′ −𝑊 ′′∥𝑇 = ∥𝐹 (𝑚) (𝑊 ′) − 𝐹 (𝑚) (𝑊 ′′)∥𝑇 ≤ 1
𝑚!
𝑇𝑚𝑘𝑚1 (1 +

√
𝑚)𝑚∥𝑊 ′ −𝑊 ′′∥𝑇 + 𝑘2𝑒

𝑇𝑘1 (1+
√
𝑚)−𝑘3𝑚,

and one can take 𝑚 arbitrarily large. This proves that the solution exists and is unique on 𝑡 ∈ [0, 𝑇]. Since 𝑇 is arbitrary,
we have existence and uniqueness of the solution to the mean-field ODEs on the time interval [0,∞). □
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E Lemma and proofs of convergence

E.1 Channel Mixing and Low-Rank Structure

The low-rank channel mixing structure enters through:

𝐻2 (𝑡, 𝑐2; 𝑋,𝑊) =
𝑟∑︁
𝑘=1

𝐿𝑐2 ,𝑘 𝑓𝑘 (𝑡; 𝑋,𝑊),

where 𝑓𝑘 (𝑡; 𝑋,𝑊) =𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (𝐿0 (𝐶1)𝑋)] are the 𝑟 partial functions.
Under the entrywise bound sup𝑐2 ,𝑘 |𝐿𝑐2 ,𝑘 | ≤ 𝐾 , we have:

∥𝐿∥∞,1 ≤ 𝑟𝐾, ∥𝐿∥∞,2 ≤
√
𝑟 𝐾.

Lemma E.1 (Sub-Gaussian bounds for low-rank sums). Let (𝑈𝑘)𝑟𝑘=1 be real random variables on a common
probability space and (𝑎𝑘)𝑟𝑘=1 ∈𝑟 deterministic. Then for every 𝑚 ≥ 1,[�� 𝑟∑︁

𝑘=1
𝑎𝑘𝑈𝑘

��𝑚]1/𝑚
≤

𝑟∑︁
𝑘=1

|𝑎𝑘 | [ |𝑈𝑘 |𝑚]1/𝑚 ≤
( 𝑟∑︁
𝑘=1

|𝑎𝑘 |
)

max
1≤𝑘≤𝑟

[|𝑈𝑘 |𝑚]1/𝑚.

Consequently, any “𝜓2-type” seminorm defined by sup𝑚≥1 𝑚
−1/2 [| · |𝑚]1/𝑚 satisfies

sup
𝑚≥1

1
√
𝑚

[�� 𝑟∑︁
𝑘=1

𝑎𝑘𝑈𝑘
��𝑚]1/𝑚

≤
( 𝑟∑︁
𝑘=1

|𝑎𝑘 |
)

max
1≤𝑘≤𝑟

sup
𝑚≥1

1
√
𝑚

[|𝑈𝑘 |𝑚]1/𝑚.

If one prefers an ℓ2 version, then also
∑𝑟
𝑘=1 |𝑎𝑘 | ≤

√
𝑟 (∑𝑘 𝑎

2
𝑘
)1/2 yields a

√
𝑟 factor.

Lemma E.2 (Forward propagation bounds scale with mixing matrix norm). Assume 𝜑1 is bounded by 𝐾 . Then for
every 𝑡 ≥ 0 and every 𝑐2 ∈ Ω2,

sup
𝑠≤𝑡

��𝐻2 (𝑠, 𝑐2; 𝑋,𝑊)
�� ≤ ( 𝑟∑︁

𝑘=1
|𝐿𝑐2 ,𝑘 |

)
max

1≤𝑘≤𝑟
sup
𝑠≤𝑡

| 𝑓𝑘 (𝑠; 𝑋,𝑊) | ≤ ∥𝐿∥∞,1 max
1≤𝑘≤𝑟

sup
𝑠≤𝑡

| 𝑓𝑘 (𝑠; 𝑋,𝑊) |.

Moreover,

sup
𝑠≤𝑡

| 𝑓𝑘 (𝑠; 𝑋,𝑊) | ≤𝐶1

[
sup
𝑠≤𝑡

|𝑤1 (𝑠, 𝐶1, 𝑘) |
��𝜑1 (𝐿0 (𝐶1)𝑋)

��] ≤ 𝐾 𝐶1

[
sup
𝑠≤𝑡

|𝑤1 (𝑠, 𝐶1, 𝑘) |
]
.

Combining these inequalities and taking moments yields, for every 𝑚 ≥ 1,

𝑋

[
sup
𝑠≤𝑡

sup
𝑐2

|𝐻2 (𝑠, 𝑐2; 𝑋,𝑊) |𝑚
]1/𝑚

≤ 𝐾 ∥𝐿∥∞,1 max
1≤𝑘≤𝑟

𝐶1

[
sup
𝑠≤𝑡

|𝑤1 (𝑠, 𝐶1, 𝑘) |𝑚
]1/𝑚

.

In particular, in the 𝜓2-type calibration,
√

50 sup
𝑚≥1

1
√
𝑚
𝑋

[
sup
𝑠≤𝑡

sup
𝑐2

|𝐻2 (𝑠, 𝑐2; 𝑋,𝑊) |𝑚
]1/𝑚

≤ 𝐾 ∥𝐿∥∞,1 ⟦𝑤1⟧𝜓,𝑡 .

E.2 Proof of Theorem ?? (global minimizer at limit, any depth)

This subsection adapts the core argument of [?], Sec. 6.3 (Proof of Theorem 34), to our low-rank setting for any
depth 𝐿 ≥ 2. We omit the homotopy argument (their Lemma 37): the first-layer feature map 𝐿0 (𝐶1) is frozen, so
supp(𝐿0 (𝐶1)) =𝑑 at init and at all 𝑡, and dense span follows without a homotopy. The main-text

High-level proof idea and [?] Sec. 6.2.1 summarize the idea; we give the formal steps.

Dense span without homotopy. 𝐿0 (𝐶1) is not trained. By Assumption ?? and Theorem ??, {𝜑1 (𝐿0 (𝑐1)·) : 𝑐1 ∈ Ω1}
has dense span in 𝐿2 (P𝑋) at all 𝑡 ≥ 0 and at the limit.
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Zero derivative at the limit. Let 𝑊̄ = (𝑤̄1, . . . , 𝑤̄𝐿−1) be a limit point under Assumption ?? (and its natural extension
to 𝐿 layers with couplings for all 𝑤ℓ). At the limit, 𝜕𝑡𝑤ℓ = 0 for all ℓ. From (??), for the top layer ℓ = 𝐿 − 1:

𝑍

[
𝑑𝐿 (𝑍; 𝑊̄) 𝜑𝐿−1 (𝐻𝐿−1 (𝑐𝐿−1; 𝑋, 𝑊̄))

]
= 0, ∀𝑐𝐿−1.

By backpropagation, the first-layer ODE yields

𝑍

[
𝑑𝐿 (𝑍; 𝑊̄) 𝜑1 (𝐿0 (𝑐1)𝑋) 𝐵 (2)

𝑘
(𝑋; 𝑊̄)

]
= 0, 𝑐1 ∈ supp(𝜌1), 𝑘 ∈ {1, . . . , 𝑟},

where 𝐵 (2)
𝑘

(𝑋; 𝑊̄) =𝐶2 [𝐿𝐶2 ,𝑘 𝜑
′
2 (𝐻2 (𝐶2; 𝑋, 𝑊̄)) 𝑤̄2 (𝐶2)] (and for 𝐿 > 3, 𝐵 (ℓ )

𝑘
involves 𝐻ℓ , 𝑤̄ℓ , 𝐿 (ℓ ) in the same way).

Since 𝐵 (2)
𝑘

depends only on 𝑋 and 𝑊̄ , we have

𝑋

[
𝑌 |𝑋 [𝑑𝐿 (𝑍; 𝑊̄) | 𝑋] 𝜑1 (𝐿0 (𝑐1)𝑋) 𝐵 (2)

𝑘
(𝑋; 𝑊̄)

]
= 0 ∀𝑐1, 𝑘 .

The function 𝑥 ↦→𝑌 |𝑋 [𝑑𝐿 | 𝑋 = 𝑥] 𝐵 (2)
𝑘

(𝑥; 𝑊̄) thus has zero inner product in 𝐿2 (P𝑋) with 𝜑1 (𝐿0 (𝑐1)·) for all 𝑐1. By
dense span, 𝑌 |𝑋 [𝑑𝐿 (𝑍; 𝑊̄) | 𝑋 = 𝑥] 𝐵 (2)

𝑘
(𝑥; 𝑊̄) = 0 for P𝑋-a.e. 𝑥.

From integrated identity to 𝜕𝑦̂ℒ a.e. We have 𝑌 |𝑋 [𝑑𝐿 (𝑍; 𝑊̄) | 𝑋 = 𝑥] 𝐵 (2)
𝑘

(𝑥; 𝑊̄) = 0 for P𝑋-a.e. 𝑥. Under
Assumption ??, max1≤𝑘≤𝑟 (𝑤̄1 (𝐶1, 𝑘) ≠ 0) > 0 and (𝑤̄ℓ (𝐶ℓ) ≠ 0) > 0 for ℓ = 2, . . . , 𝐿 − 1; by Assumption ??,
𝜑′2 (𝐻2 (𝑐2; 𝑥, 𝑊̄)) ≠ 0 for P𝑋-a.e. 𝑥 and 𝜌2-a.e. 𝑐2. Hence for P𝑋-a.e. 𝑥 and almost every 𝑐2, the factor in 𝐵 (2)

𝑘
involving

𝜑′2 is non-zero, so 𝐵 (2)
𝑘

(𝑥; 𝑊̄) is non-zero on a set of positive P𝑋-measure. On that set, 𝑌 |𝑋 [𝑑𝐿 (𝑍; 𝑊̄) | 𝑋 = 𝑥] = 0,
and thus 𝑍 [𝜕𝑦̂ℒ(𝑌, 𝑦̂(𝑋; 𝑊̄)) | 𝑋 = 𝑥] = 0 for P𝑋-a.e. 𝑥.

On ReLU and relaxing the activation-derivative assumption. Assumption ?? requires 𝜑′2 bounded away from zero
and excludes ReLU. At convergence, we are at a stationary point: 𝜕𝑡𝑤ℓ = 0 for all ℓ, so the ODE right-hand sides vanish
and all backpropagated signals contribute zero to the gradient—training has converged because the gradient is zero.
The step above uses 𝜑′2 (𝐻2) ≠ 0 to deduce 𝐵 (2)

𝑘
(𝑥; 𝑊̄) ≠ 0 on a set of positive measure and thus [𝑑𝐿 | 𝑋 = 𝑥] = 0 a.e.

The only problematic case for ReLU is when the limit 𝑊̄ is such that 𝐵 (2)
𝑘

= 0 P𝑋-a.e. purely because 𝜑′2 (𝐻2) = 0
everywhere on the relevant support (for ReLU, 𝐻2 ≤ 0). That is convergence to a degenerate point where the gradient
vanishes solely because all backprop through the activation derivative are zero. This event is exponentially rare in the
rank 𝑟: it requires the pre-activation configuration (over 𝑟 channels and the layer width) to lie in a degenerate set, and
the probability of landing there is of order 𝑒−𝑂 (𝑟 ) .

Optimality (Assumption ??). We have [𝜕2L(𝑌, 𝑦̂(𝑋; 𝑊̄)) | 𝑋 = 𝑥] = 0 for P𝑋-a.e. 𝑥. By the loss condition,
E[𝜕2L(𝑌, 𝑢) |𝑋 = 𝑥] = 0 implies E[L(𝑌, 𝑢) |𝑋 = 𝑥] = 0. Thus [L(𝑌, 𝑦̂(𝑋; 𝑊̄)) | 𝑋 = 𝑥] = 0 for P𝑋-a.e. 𝑥, so
ℒ(𝑊̄) = 0. For non-negative L, 𝑊̄ is a global minimizer.

ℒ(𝑊 (𝑡)) → ℒ(𝑊̄). By Assumption ??, the couplings 𝜋𝑡 and the Wasserstein-like integrals (??)–(??) (and
their 𝐿-layer analogues) tend to 0. The output difference | 𝑦̂(𝑋;𝑊 (𝑡)) − 𝑦̂(𝑋; 𝑊̄) | is bounded by a 𝐾-multiple
of those integrals (via the low-rank structure: 𝐻2 =

∑
𝑘 𝐿𝑐2 ,𝑘 𝑓𝑘 , 𝐵

(ℓ )
𝑘

, and the regularity of 𝜑ℓ , 𝜕2L). Thus
ℒ(𝑊 (𝑡)) − ℒ(𝑊̄) =𝑍 [L(𝑌, 𝑦̂(𝑋;𝑊 (𝑡))) − L(𝑌, 𝑦̂(𝑋; 𝑊̄))] is bounded by 𝐾𝑍 [| 𝑦̂(𝑋;𝑊 (𝑡)) − 𝑦̂(𝑋; 𝑊̄) |] → 0 as
𝑡 → ∞.

F Detailed Proof Sketches

F.1 Well-Posedness: Picard Iteration Details

The key technical result is that the low-rank structure only multiplies constants by 𝑟:

Lemma F.1 (Moment bounds for low-rank sums). For the low-rank sum 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊) = ∑𝑟
𝑘=1 𝐿𝑐2 ,𝑘 𝑓𝑘 (𝑡; 𝑋,𝑊),

we have

𝑋

[
sup
𝑠≤𝑡

sup
𝑐2

|𝐻2 (𝑠, 𝑐2; 𝑋,𝑊) |𝑚
]1/𝑚

≤ 𝐾 ∥𝐿∥∞,1 max
1≤𝑘≤𝑟

𝐶1

[
sup
𝑠≤𝑡

|𝑤1 (𝑠, 𝐶1, 𝑘) |𝑚
]1/𝑚

,

where ∥𝐿∥∞,1 ≤ 𝑟𝐾 under entrywise bounds.

This lemma shows that the forward propagation bounds are multiplied by at most 𝑟𝐾, but the structure of the Picard
iteration remains unchanged. The contraction mapping argument proceeds as in the full-rank case, with constants
depending on ∥𝐿∥∞,1.
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G Quantitative Approximation by the Mean-Field Limit for Low-Rank Networks

This appendix provides a rigorous quantitative bound on the approximation error between finite-width low-rank networks
and their mean-field limit. The key result shows that the approximation error scales as 𝑂 (1/√𝑛min +

√
𝜖) with explicit

constants, where 𝑛min is the minimum width across layers and 𝜖 is the learning rate step size. This bound holds
for any 𝑛1 and 𝑛2, independent of the data dimension 𝑑, similar to the full-rank case [?, ?]. The bound suggests
that widths 𝑛1, 𝑛2 ≈ 1000 are typically sufficient to observe mean-field behaviors, as empirically validated in [?] for
high-dimensional real-world data.

G.1 Main Result: Approximation by the MF Limit

Assumption G.1 (Initialization for Low-Rank Networks). We assume that ess-sup max1≤𝑘≤𝑟 |𝑤0
1 (𝐶1, 𝑘) | ≤ 𝐾 and

ess-sup|𝑤0
2 (𝐶2) | ≤ 𝐾 , where 𝑤0

1 and 𝑤0
2 are the initial weights as described in the low-rank architecture setup.

Theorem G.1 (Finite-width approximation error bound). Given a family Init of initialization laws and a tuple
{𝑛1, 𝑛2} that is in the index set of Init, perform the coupling procedure for the low-rank architecture as described
in Section ??. Fix a terminal time 𝑇 ∈ 𝜖N≥0. Under Assumptions ??, ??, and the low-rank structure with mixing
matrix 𝐿 satisfying ∥𝐿∥∞,1 ≤ 𝑟𝐾 , for 𝜖 ≤ 1, we have with probability at least 1 − 2𝛿,

𝒟𝑇 (𝑊,W) ≤ 𝐶exp · 𝐶width · 𝐶log,

where 𝐶exp = 𝑒𝐾𝑇 (1+𝑟𝐾 ) , 𝐶width = 1/√𝑛min +
√
𝜖 , 𝐶log =

√︁
log(3(𝑇 + 1)𝑛2

max/𝛿 + 𝑒), with 𝑛min = min{𝑛1, 𝑛2},
𝑛max = max{𝑛1, 𝑛2}, 𝐾𝑇 = 𝐾 (1 + 𝑇𝐾 ), and the factor (1 + 𝑟𝐾) accounts for the low-rank structure through
∥𝐿∥∞,1 ≤ 𝑟𝐾 .

The theorem gives a connection between W(⌊𝑡/𝜖⌋) (the discrete-time finite-width network) and𝑊 (𝑡) (the continuous-
time mean-field limit). The key difference from the full-rank case [?] is the multiplicative factor (1 + 𝑟𝐾) in the
exponential constant. In the full-rank setting, the exponential factor is 𝑒𝐾𝑇 , while our low-rank architecture introduces
an additional (1 + 𝑟𝐾) factor that accounts for the 𝑟 independent channels evolving through the mixing matrix 𝐿. This
factor reflects the channel feature learning structure: the 𝑟 channels evolve independently through the mixing matrix 𝐿,
each contributing a factor that reflects the multi-channel nature of the learning dynamics.

Corollary G.1 (Test function approximation quality). Under the same setting as Theorem ??, consider any test
function 𝜓 : R × R → R which is 𝐾-Lipschitz in the second variable uniformly in the first variable (an example of 𝜓
is the loss ℒ). For any 𝛿 > 0, with probability at least 1 − 3𝛿,

sup
𝑡≤𝑇

|E𝑍 [𝜓 (𝑌, ŷ (𝑋; W (⌊𝑡/𝜖⌋)))] − E𝑍 [𝜓 (𝑌, 𝑦̂ (𝑋;𝑊 (𝑡)))] | ≤ 𝑒2𝐾𝑇 (1+𝑟𝐾 )
(

1
√
𝑛min

+
√
𝜖

)
log1/2

(
3(𝑇 + 1)𝑛2

max
𝛿

+ 𝑒
)
,

where ŷ(𝑋; W) and 𝑦̂(𝑋;𝑊) denote the outputs of the finite-width and mean-field networks respectively.

Proof sketch. The proof follows the same structure as in the full-rank case [?]. Since 𝜓 is 𝐾-Lipschitz in the second
variable, we have:

|𝜓(𝑌, ŷ(𝑋; W)) − 𝜓(𝑌, 𝑦̂(𝑋;𝑊)) | ≤ 𝐾 |ŷ(𝑋; W) − 𝑦̂(𝑋;𝑊) |.

The difference |ŷ(𝑋; W) − 𝑦̂(𝑋;𝑊) | can be bounded by the distance 𝒟𝑇 (𝑊,W) using the low-rank structure of the
network. Specifically, for the low-rank architecture, the output difference involves:

|ŷ(𝑋; W) − 𝑦̂(𝑋;𝑊) | ≤
𝑟∑︁
𝑘=1

|𝐿𝐶2 ,𝑘 |

������ 1
𝑛1

𝑛1∑︁
𝑗1=1

w1 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘)𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑋⟩)

−E𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘)𝜑1 (⟨𝐿0 (𝐶1), 𝑋⟩)]
�� + (similar terms for 𝑤2)

≤ 𝑟𝐾𝒟𝑇 (𝑊,W) + 𝐾𝒟𝑇 (𝑊,W) = 𝐾 (1 + 𝑟𝐾)𝒟𝑇 (𝑊,W),

where we used ∥𝐿∥∞,1 ≤ 𝑟𝐾 . Taking expectation over 𝑍 and applying Theorem ?? completes the proof. □
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Comparison with the full-rank Case. The main difference between our low-rank result and the full-rank case [?] is
the appearance of the factor (1 + 𝑟𝐾) in the exponential constant. In the full-rank case, the bound is:

𝒟𝑇 (𝑊,W) ≤ 𝑒𝐾𝑇

(
1

√
𝑛min

+
√
𝜖

)
log1/2

(
3(𝑇 + 1)𝑛2

max
𝛿

+ 𝑒
)
,

whereas in our low-rank case, we have:

𝒟𝑇 (𝑊,W) ≤ 𝑒𝐾𝑇 (1+𝑟𝐾 )
(

1
√
𝑛min

+
√
𝜖

)
log1/2

(
3(𝑇 + 1)𝑛2

max
𝛿

+ 𝑒
)
.

The factor (1 + 𝑟𝐾) arises from:

• The low-rank structure of 𝐻2, which involves a sum over 𝑟 channels: 𝐻2 (𝑡, 𝑐2; 𝑋,𝑊) = ∑𝑟
𝑘=1 𝐿𝑐2 ,𝑘 𝑓𝑘 (𝑡; 𝑋,𝑊).

• The mixing matrix bounds: ∥𝐿∥∞,1 = sup𝑐2

∑𝑟
𝑘=1 |𝐿𝑐2 ,𝑘 | ≤ 𝑟𝐾 .

• The backpropagated signal 𝐵𝑘 which aggregates over 𝑛2 neurons with mixing coefficients 𝐿𝐶2 ,𝑘 .

However, the fundamental structure of the proof remains the same: we still decompose the error into particle coupling
and gradient descent discretization, and the scaling with 𝑛min and 𝜖 is identical. The low-rank structure only affects the
exponential constant, not the polynomial scaling. This suggests that the mean-field approximation quality is preserved
under low-rank constraints, with the trade-off being a potentially larger (but still finite) exponential constant.

Remark G.1 (Deterministic mixing matrix and hierarchical learning). The mixing matrix 𝐿 can be chosen
deterministically (e.g., on a grid) rather than randomly, since the proof only requires the boundedness condition
∥𝐿∥∞,1 ≤ 𝑟𝐾. There is no advantage to maximizing the entries of 𝐿; fixing 𝐿 deterministically with appropriate
structure can enable hierarchical learning, where different channels 𝑘 specialize to different frequency components
or scales through the backpropagated signal 𝐵𝑘 . This design choice allows for structured learning dynamics while
maintaining the same theoretical guarantees.

G.2 Particle ODEs for Low-Rank Networks

We construct auxiliary trajectories, which we call the particle ODEs for the low-rank case. These are continuous-time
trajectories of finitely many neurons, averaged over the data distribution, adapted to the low-rank structure:

𝜕

𝜕𝑡
𝑤̃2 (𝑡, 𝑗2) = −𝜉2 (𝑡)E𝑍

[
𝑑𝐿 (𝑍; 𝑊̃ (𝑡)) 𝜑2 (𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃ (𝑡)))

]
,

𝜕

𝜕𝑡
𝑤̃1 (𝑡, 𝑗1, 𝑘) = −𝜉1 (𝑡)E𝑍

[
𝑑𝐿 (𝑍; 𝑊̃ (𝑡)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑋⟩) 𝐵̃𝑘 (𝑡; 𝑋, 𝑊̃ (𝑡))

]
,

where 𝑗1 = 1, . . . , 𝑛1, 𝑗2 = 1, . . . , 𝑛2, 𝑘 = 1, . . . , 𝑟 , 𝑊̃ (𝑡) = (𝑤̃1 (𝑡, ·, ·), 𝑤̃2 (𝑡, ·)), and 𝑡 ∈ R≥0.
The second-layer output for the particle ODEs is:

𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃) =
𝑟∑︁
𝑘=1

𝐿𝐶2 ( 𝑗2 ) ,𝑘
1
𝑛1

𝑛1∑︁
𝑗1=1

𝑤̃1 (𝑡, 𝑗1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑋⟩),

and the backpropagated signal is:

𝐵̃𝑘 (𝑡; 𝑋, 𝑊̃) = 1
𝑛2

𝑛2∑︁
𝑗2=1

𝐿𝐶2 ( 𝑗2 ) ,𝑘 𝜑
′
2 (𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃)) 𝑤̃2 (𝑡, 𝑗2).

We specify the initialization 𝑊̃ (0): 𝑤̃1 (0, 𝑗1, 𝑘) = 𝑤0
1 (𝐶1 ( 𝑗1), 𝑘) and 𝑤̃2 (0, 𝑗2) = 𝑤0

2 (𝐶2 ( 𝑗2)). That is, it shares the
same initialization with the neural network W(0), and hence is coupled with the neural network and the MF ODEs.
The existence and uniqueness of the solution to the particle ODEs follows from the same proof as in Theorem ??,
adapted to account for the low-rank structure. We equip 𝑊̃ (𝑡) with the norm:

𝑊̃𝑇 = max
{

max
𝑗1≤𝑛1 ,1≤𝑘≤𝑟

sup
𝑡≤𝑇

|𝑤̃1 (𝑡, 𝑗1, 𝑘) |, max
𝑗2≤𝑛2

sup
𝑡≤𝑇

|𝑤̃2 (𝑡, 𝑗2) |
}
.
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We define the distance measures:

𝒟𝑇 (𝑊, 𝑊̃) = sup
{
|𝑤1 (𝑡, 𝐶1 ( 𝑗1), 𝑘) − 𝑤̃1 (𝑡, 𝐶1 ( 𝑗1), 𝑘) |, |𝑤2 (𝑡, 𝐶2 ( 𝑗2)) − 𝑤̃2 (𝑡, 𝐶2 ( 𝑗2)) | :

𝑡 ≤ 𝑇, 𝑗1 ≤ 𝑛1, 𝑗2 ≤ 𝑛2, 1 ≤ 𝑘 ≤ 𝑟
}
,

𝒟𝑇 (𝑊̃,W) = sup
{
|w1 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘) − 𝑤̃1 (𝑡, 𝐶1 ( 𝑗1), 𝑘) |,

|w2 (⌊𝑡/𝜖⌋, 𝑗2) − 𝑤̃2 (𝑡, 𝐶2 ( 𝑗2)) | : 𝑡 ≤ 𝑇, 𝑗1 ≤ 𝑛1, 𝑗2 ≤ 𝑛2, 1 ≤ 𝑘 ≤ 𝑟
}
.

G.3 Key Lemmas

Lemma G.1 (Particle coupling bound). Under the same setting as Theorem ??, for any 𝛿 > 0, with probability at
least 1 − 𝛿,

𝒟𝑇 (𝑊, 𝑊̃) ≤ 1
√
𝑛min

log1/2
(

3(𝑇 + 1)𝑛2
max

𝛿
+ 𝑒

)
𝑒𝐾𝑇 (1+𝑟𝐾 ) ,

in which 𝑛min = min{𝑛1, 𝑛2}, 𝑛max = max{𝑛1, 𝑛2}, and 𝐾𝑇 = 𝐾 (1 + 𝑇𝐾 ).

Lemma G.2 (Gradient descent discretization error). Under the same setting as Theorem ??, for any 𝛿 > 0 and
𝜖 ≤ 1, with probability at least 1 − 𝛿,

𝒟𝑇 (𝑊̃,W) ≤

√︄
𝜖 log

(
2𝑛1𝑛2𝑟

𝛿
+ 𝑒

)
𝑒𝐾𝑇 (1+𝑟𝐾 ) ,

in which 𝐾𝑇 = 𝐾 (1 + 𝑇𝐾 ).

Proof of Theorem ??. Using the triangle inequality:

𝒟𝑇 (𝑊,W) ≤ 𝒟𝑇 (𝑊, 𝑊̃) +𝒟𝑇 (𝑊̃,W),

the result follows immediately from Lemmas ?? and ??, noting that the log(2𝑛1𝑛2𝑟/𝛿) term can be absorbed into the
log(3(𝑇 + 1)𝑛2

max/𝛿 + 𝑒) term up to constants. □

G.4 Proof of Lemma ??

Proof. In the following, let 𝐾𝑡 denote a generic positive constant that may change from line to line and takes the form
𝐾𝑡 = 𝐾 (1 + 𝑡𝐾 ), such that 𝐾𝑡 ≥ 1 and 𝐾𝑡 ≤ 𝐾𝑇 for all 𝑡 ≤ 𝑇 . We first note that at initialization, 𝒟0 (𝑊, 𝑊̃) = 0. Since
𝑊0 ≤ 𝐾 , we have𝑊𝑇 ≤ 𝐾𝑇 by the a priori bounds. Furthermore, it is easy to see that 𝑊̃0 ≤ 𝑊0 ≤ 𝐾 almost surely. By
the same argument, 𝑊̃𝑇 ≤ 𝐾𝑇 almost surely.
We decompose the proof into several steps.

Step 1: Main bound with low-rank structure. Let us define, for brevity, the differences specific to the low-rank
architecture:

𝑞2 (𝑡, 𝑥, 𝑗2, 𝑐2) = 𝐻̃2 (𝑡, 𝑗2; 𝑥, 𝑊̃ (𝑡)) − 𝐻2 (𝑡, 𝑐2; 𝑥,𝑊 (𝑡)),
𝑞𝐵,𝑘 (𝑡, 𝑥) = 𝐵̃𝑘 (𝑡; 𝑥, 𝑊̃ (𝑡)) − 𝐵𝑘 (𝑡; 𝑥,𝑊 (𝑡)),

where 𝐻2 (𝑡, 𝑐2; 𝑥,𝑊) =
∑𝑟
𝑘=1 𝐿𝑐2 ,𝑘 E𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1), 𝑥⟩)] and 𝐵𝑘 (𝑡; 𝑥,𝑊) =

E𝐶2 [𝐿𝐶2 ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2; 𝑥,𝑊)) 𝑤2 (𝑡, 𝐶2)].

Consider 𝑡 ≥ 0. We first bound the difference in the updates between𝑊 and 𝑊̃ .
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Bound for 𝑤2 and 𝑤̃2: By Assumption ?? and the definition of the ODEs:���� 𝜕𝜕𝑡 𝑤̃2 (𝑡, 𝑗2) −
𝜕

𝜕𝑡
𝑤2 (𝑡, 𝐶2 ( 𝑗2))

����
=

��𝜉2 (𝑡)E𝑍
[
𝑑𝐿 (𝑍; 𝑊̃ (𝑡)) 𝜑2 (𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃ (𝑡))) − 𝑑𝐿 (𝑍;𝑊 (𝑡)) 𝜑2 (𝐻2 (𝑡, 𝐶2 ( 𝑗2); 𝑋,𝑊 (𝑡)))

] ��
≤ 𝐾E𝑍

[
|𝑑𝐿 (𝑍; 𝑊̃ (𝑡)) − 𝑑𝐿 (𝑍;𝑊 (𝑡)) | |𝜑2 (𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃ (𝑡))) |

]
+ 𝐾E𝑍

[
|𝑑𝐿 (𝑍;𝑊 (𝑡)) | |𝜑2 (𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃ (𝑡))) − 𝜑2 (𝐻2 (𝑡, 𝐶2 ( 𝑗2); 𝑋,𝑊 (𝑡))) |

]
≤ 𝐾𝑡E𝑍 [|𝑞2 (𝑡, 𝑋, 𝑗2, 𝐶2 ( 𝑗2)) |] + 𝐾𝑡𝒟𝑡 (𝑊, 𝑊̃),

where we used that 𝑑𝐿 is Lipschitz in𝑊 , 𝜑2 is Lipschitz, and 𝐻2 differences are controlled.

Bound for 𝑤1 and 𝑤̃1: For the low-rank case, we have 𝑘 = 1, . . . , 𝑟 channels. By the definition of the ODEs:���� 𝜕𝜕𝑡 𝑤̃1 (𝑡, 𝑗1, 𝑘) −
𝜕

𝜕𝑡
𝑤1 (𝑡, 𝐶1 ( 𝑗1), 𝑘)

����
=

��𝜉1 (𝑡)E𝑍
[
𝑑𝐿 (𝑍; 𝑊̃ (𝑡)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑋⟩) 𝐵̃𝑘 (𝑡; 𝑋, 𝑊̃ (𝑡))

−𝑑𝐿 (𝑍;𝑊 (𝑡)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑋⟩) 𝐵𝑘 (𝑡; 𝑋,𝑊 (𝑡))
] ��

≤ 𝐾E𝑍
[
|𝑑𝐿 (𝑍; 𝑊̃ (𝑡)) − 𝑑𝐿 (𝑍;𝑊 (𝑡)) | |𝐵̃𝑘 (𝑡; 𝑋, 𝑊̃ (𝑡)) |

]
+ 𝐾E𝑍

[
|𝑑𝐿 (𝑍;𝑊 (𝑡)) | |𝑞𝐵,𝑘 (𝑡, 𝑋) |

]
≤ 𝐾𝑡E𝑍

[
|𝑞𝐵,𝑘 (𝑡, 𝑋) |

]
+ 𝐾𝑡𝒟𝑡 (𝑊, 𝑊̃),

where the expectation over 𝑗2 in 𝐵̃𝑘 will be handled via concentration.

Step 2: Decomposition of 𝑞2 with low-rank structure. The key difference from the full-rank case is that 𝐻2 involves
a sum over 𝑟 channels. We decompose:

|𝑞2 (𝑡, 𝑥, 𝑗2, 𝑐2) | =

������ 𝑟∑︁𝑘=1
𝐿𝐶2 ( 𝑗2 ) ,𝑘

©­« 1
𝑛1

𝑛1∑︁
𝑗1=1

𝑤̃1 (𝑡, 𝑗1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩)

−E𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1), 𝑥⟩)]
)���

≤
𝑟∑︁
𝑘=1

|𝐿𝐶2 ( 𝑗2 ) ,𝑘 |

������ 1
𝑛1

𝑛1∑︁
𝑗1=1

𝑤̃1 (𝑡, 𝑗1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩)

−E𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1), 𝑥⟩)]
�� .

We further decompose each term in the sum:������ 1
𝑛1

𝑛1∑︁
𝑗1=1

𝑤̃1 (𝑡, 𝑗1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩) − E𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1), 𝑥⟩)]

������
≤ max
𝑗1≤𝑛1

��𝑤̃1 (𝑡, 𝑗1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩) − 𝑤1 (𝑡, 𝐶1 ( 𝑗1), 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩)
��

+

������ 1
𝑛1

𝑛1∑︁
𝑗1=1

𝑤1 (𝑡, 𝐶1 ( 𝑗1), 𝑘) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩) − E𝐶1 [𝑤1 (𝑡, 𝐶1, 𝑘) 𝜑1 (⟨𝐿0 (𝐶1), 𝑥⟩)]

������
≡ 𝑄2,1,𝑘 (𝑥, 𝑗2) +𝑄2,2,𝑘 (𝑥, 𝑗2).

Therefore:

|𝑞2 (𝑡, 𝑥, 𝑗2, 𝑐2) | ≤
𝑟∑︁
𝑘=1

|𝐿𝐶2 ( 𝑗2 ) ,𝑘 | (𝑄2,1,𝑘 (𝑥, 𝑗2) +𝑄2,2,𝑘 (𝑥, 𝑗2)) ≤ 𝑟𝐾 max
1≤𝑘≤𝑟

(𝑄2,1,𝑘 (𝑥, 𝑗2) +𝑄2,2,𝑘 (𝑥, 𝑗2)),

where we used ∥𝐿∥∞,1 ≤ 𝑟𝐾 .

25



Step 3: Decomposition of 𝑞𝐵,𝑘 with low-rank structure. For the backpropagated signal difference:

|𝑞𝐵,𝑘 (𝑡, 𝑥) | =

������ 1
𝑛2

𝑛2∑︁
𝑗2=1

𝐿𝐶2 ( 𝑗2 ) ,𝑘 𝜑
′
2 (𝐻̃2 (𝑡, 𝑗2; 𝑥, 𝑊̃)) 𝑤̃2 (𝑡, 𝑗2)

−E𝐶2 [𝐿𝐶2 ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2; 𝑥,𝑊)) 𝑤2 (𝑡, 𝐶2)]

�� .
We decompose:

|𝑞𝐵,𝑘 (𝑡, 𝑥) | ≤ max
𝑗2≤𝑛2

��𝐿𝐶2 ( 𝑗2 ) ,𝑘 𝜑
′
2 (𝐻̃2 (𝑡, 𝑗2; 𝑥, 𝑊̃)) 𝑤̃2 (𝑡, 𝑗2)

−𝐿𝐶2 ( 𝑗2 ) ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2 ( 𝑗2); 𝑥,𝑊)) 𝑤2 (𝑡, 𝐶2 ( 𝑗2))

��
+

������ 1
𝑛2

𝑛2∑︁
𝑗2=1

𝐿𝐶2 ( 𝑗2 ) ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2 ( 𝑗2); 𝑥,𝑊)) 𝑤2 (𝑡, 𝐶2 ( 𝑗2))

−E𝐶2 [𝐿𝐶2 ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2; 𝑥,𝑊)) 𝑤2 (𝑡, 𝐶2)]

��
≡ 𝑄𝐵,1,𝑘 (𝑥) +𝑄𝐵,2,𝑘 (𝑥).

For 𝑄𝐵,1,𝑘 , using Assumption ?? and the fact that |𝐿𝐶2 ( 𝑗2 ) ,𝑘 | ≤ 𝐾:

E𝑍 [𝑄𝐵,1,𝑘 (𝑋)] ≤ 𝐾 max
𝑗2≤𝑛2

(|𝑤̃2 (𝑡, 𝑗2) − 𝑤2 (𝑡, 𝐶2 ( 𝑗2)) |

+|𝑤2 (𝑡, 𝐶2 ( 𝑗2)) | E𝑍 [|𝐻̃2 (𝑡, 𝑗2; 𝑋, 𝑊̃) − 𝐻2 (𝑡, 𝐶2 ( 𝑗2); 𝑋,𝑊) |]
)

≤ 𝐾𝑡

(
𝒟𝑡 (𝑊, 𝑊̃) + max

𝑗2≤𝑛2
E𝑍 [|𝑞2 (𝑡, 𝑋, 𝑗2, 𝐶2 ( 𝑗2)) |]

)
.

Step 4: Concentration bounds adapted to low-rank. For 𝑄2,1,𝑘 , we have:

max
𝑗2≤𝑛2

E𝑍 [𝑄2,1,𝑘 (𝑋, 𝑗2)] ≤ 𝐾 max
𝑗1≤𝑛1 ,1≤𝑘≤𝑟

|𝑤̃1 (𝑡, 𝑗1, 𝑘) − 𝑤1 (𝑡, 𝐶1 ( 𝑗1), 𝑘) |

≤ 𝐾𝑡𝒟𝑡 (𝑊, 𝑊̃).

For 𝑄2,2,𝑘 , we apply concentration. Let us write:

𝑍1,𝑘 (𝑥, 𝑐1) = 𝑤1 (𝑡, 𝑐1, 𝑘) 𝜑1 (⟨𝐿0 (𝑐1), 𝑥⟩).

Recall that {𝐶1 ( 𝑗1)}𝑛1
𝑗1=1 are i.i.d. We have:

E[𝑍1,𝑘 (𝑋,𝐶1 ( 𝑗1)) |𝑋] = E𝐶1 [𝑍1,𝑘 (𝑋,𝐶1)],

and {𝑍1,𝑘 (𝑋,𝐶1 ( 𝑗1))}𝑛1
𝑗1=1 are independent conditional on 𝑋 . By Assumption ??, |𝑍1,𝑘 (𝑋,𝐶1 ( 𝑗1)) | ≤ 𝐾𝑡 almost surely.

Then by concentration inequalities:

P
(
E𝑍 [𝑄2,2,𝑘 (𝑋, 𝑗2)] ≥ 𝐾𝑡𝛾2,𝑘

)
≤ 1
𝛾2,𝑘

exp

(
−
𝑛1𝛾

2
2,𝑘

𝐾𝑡

)
.

For 𝑄𝐵,2,𝑘 , we note that almost surely:

|𝐿𝐶2 ( 𝑗2 ) ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2 ( 𝑗2); 𝑥,𝑊)) 𝑤2 (𝑡, 𝐶2 ( 𝑗2)) | ≤ 𝐾 |𝐿𝐶2 ( 𝑗2 ) ,𝑘 | ≤ 𝐾2,

by Assumption ??. Then by concentration inequalities:

P
(
E𝑍 [𝑄𝐵,2,𝑘 (𝑋)] ≥ 𝐾𝑡𝛾1,𝑘

)
≤ 1
𝛾1,𝑘

exp

(
−
𝑛2𝛾

2
1,𝑘

𝐾𝑡

)
.
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Step 5: Combining bounds with union over 𝑘 . Taking a union bound over 𝑘 = 1, . . . , 𝑟 channels, we obtain that for
any 𝛾1, 𝛾2 > 0 and 𝑡 ≥ 0, the event:

max

{
max
𝑗2≤𝑛2

E𝑍 [|𝑞2 (𝑡, 𝑋, 𝑗2, 𝐶2 ( 𝑗2)) |],

max
𝑗1≤𝑛1 ,1≤𝑘≤𝑟

E𝑍 [|𝑞𝐵,𝑘 (𝑡, 𝑋) |]
}

≤ 𝐾𝑡 (1 + 𝑟𝐾) (𝒟𝑡 (𝑊, 𝑊̃) + 𝛾1 + 𝛾2),

holds with probability at least:

1 − 𝑛1𝑟

𝛾1
exp

(
−

𝑛2𝛾
2
1

𝐾𝑡 (1 + 𝑟𝐾)2

)
− 𝑛2𝑟

𝛾2
exp

(
−

𝑛1𝛾
2
2

𝐾𝑡 (1 + 𝑟𝐾)2

)
.

Step 6: Gronwall argument. Combining the bounds and taking a union bound over a discrete time grid 𝑡 ∈
{0, 𝜉, 2𝜉, . . . , ⌊𝑇/𝜉⌋𝜉} for some 𝜉 ∈ (0, 1), we obtain:

max
{

max
𝑗2≤𝑛2

���� 𝜕𝜕𝑡 𝑤̃2 (𝑡, 𝑗2) −
𝜕

𝜕𝑡
𝑤2 (𝑡, 𝐶2 ( 𝑗2))

���� ,
max

𝑗1≤𝑛1 ,1≤𝑘≤𝑟

���� 𝜕𝜕𝑡 𝑤̃1 (𝑡, 𝑗1, 𝑘) −
𝜕

𝜕𝑡
𝑤1 (𝑡, 𝐶1 ( 𝑗1), 𝑘)

����}
≤ 𝐾𝑇 (1 + 𝑟𝐾) (𝒟𝑡 (𝑊, 𝑊̃) + 𝛾1 + 𝛾2 + 𝜉), ∀𝑡 ∈ [0, 𝑇],

with probability at least:

1 − 𝑇 + 1
𝜉

[
𝑛1𝑟

𝛾1
exp

(
−

𝑛2𝛾
2
1

𝐾𝑇 (1 + 𝑟𝐾)2

)
+ 𝑛2𝑟

𝛾2
exp

(
−

𝑛1𝛾
2
2

𝐾𝑇 (1 + 𝑟𝐾)2

)]
.

The above event implies:

𝒟𝑡 (𝑊, 𝑊̃) ≤ 𝐾𝑇 (1 + 𝑟𝐾)
∫ 𝑡

0
(𝒟𝑠 (𝑊, 𝑊̃) + 𝛾1 + 𝛾2 + 𝜉)𝑑𝑠,

and hence by Gronwall’s lemma and the fact 𝒟0 (𝑊, 𝑊̃) = 0:

𝒟𝑇 (𝑊, 𝑊̃) ≤ (𝛾1 + 𝛾2 + 𝜉)𝑒𝐾𝑇 (1+𝑟𝐾 ) .

The result follows from choosing:

𝜉 =
1

√
𝑛max

,

𝛾1 =
𝐾𝑇 (1 + 𝑟𝐾)

√
𝑛2

log1/2
(

3(𝑇 + 1)𝑛2
max𝑟

𝛿
+ 𝑒

)
,

𝛾2 =
𝐾𝑇 (1 + 𝑟𝐾)

√
𝑛1

log1/2
(

3(𝑇 + 1)𝑛2
max𝑟

𝛿
+ 𝑒

)
.

□

G.5 Proof of Lemma ??

Proof. The proof follows the same structure as the full-rank case [?], with careful adaptations for the low-rank structure.
The key difference is that we need to account for the 𝑟 channels in 𝑤1 and the mixing matrix 𝐿 in all bounds.
We consider 𝑡 ≤ 𝑇 for a given terminal time 𝑇 ∈ 𝜖N≥0. We reuse the notation 𝐾𝑡 from the proof of Lemma ??. Note
that 𝐾𝑡 ≤ 𝐾𝑇 for all 𝑡 ≤ 𝑇 . We also note that at initialization, 𝒟0 (W, 𝑊̃) = 0.
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For brevity, let us define quantities that relate to the difference in the gradient updates between W and 𝑊̃ :

𝑞2 (𝑘, 𝑧, 𝑧, 𝑗2) = 𝑑𝐿 (𝑧; W(𝑘)) 𝜑2 (H2 (𝑘, 𝑗2; 𝑥,W(𝑘)))
− 𝑑𝐿 (𝑧; 𝑊̃ (𝑘𝜖)) 𝜑2 (𝐻̃2 (𝑘𝜖, 𝑗2; 𝑥, 𝑊̃ (𝑘𝜖))),

𝑟2 (𝑘, 𝑧, 𝑗2) = 𝜉2 (𝑘𝜖)𝑑𝐿 (𝑧; 𝑊̃ (𝑘𝜖)) 𝜑2 (𝐻̃2 (𝑘𝜖, 𝑗2; 𝑥, 𝑊̃ (𝑘𝜖)))
− 𝜉2 (𝑘𝜖)E𝑍 [𝑑𝐿 (𝑍; 𝑊̃ (𝑘𝜖)) 𝜑2 (𝐻̃2 (𝑘𝜖, 𝑗2; 𝑋, 𝑊̃ (𝑘𝜖)))],

𝑞1 (𝑘, 𝑧, 𝑧, 𝑗1, 𝑘 ′) = 𝑑𝐿 (𝑧; W(𝑘)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩) B𝑘′ (𝑘; 𝑥,W(𝑘))
− 𝑑𝐿 (𝑧; 𝑊̃ (𝑘𝜖)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩) 𝐵̃𝑘′ (𝑘𝜖 ; 𝑥, 𝑊̃ (𝑘𝜖)),

𝑟1 (𝑘, 𝑧, 𝑗1, 𝑘 ′) = 𝜉1 (𝑘𝜖)𝑑𝐿 (𝑧; 𝑊̃ (𝑘𝜖)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑥⟩) 𝐵̃𝑘′ (𝑘𝜖 ; 𝑥, 𝑊̃ (𝑘𝜖))
− 𝜉1 (𝑘𝜖)E𝑍 [𝑑𝐿 (𝑍; 𝑊̃ (𝑘𝜖)) 𝜑1 (⟨𝐿0 (𝐶1 ( 𝑗1)), 𝑋⟩) 𝐵̃𝑘′ (𝑘𝜖 ; 𝑋, 𝑊̃ (𝑘𝜖))],

where B𝑘′ (𝑘; 𝑥,W) = 1
𝑛2

∑𝑛2
𝑗2=1 𝐿𝐶2 ( 𝑗2 ) ,𝑘′ 𝜑

′
2 (H2 (𝑘, 𝑗2; 𝑥,W)) w2 (𝑘, 𝑗2).

By time-interpolation estimates (similar to Claim 1 in the full-rank case) and Assumption ??, we have:

|w2 (⌊𝑡/𝜖⌋, 𝑗2) − 𝑤̃2 (𝑡, 𝑗2) | ≤ 𝐾 max
𝑗2≤𝑛2

[
𝑄2,1 (⌊𝑡/𝜖⌋, 𝑗2) +𝑄2,2 (⌊𝑡/𝜖⌋, 𝑗2)

]
+ 𝑡𝐾𝑡𝜖,

|w1 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘) − 𝑤̃1 (𝑡, 𝑗1, 𝑘) | ≤ 𝐾 max
𝑗1≤𝑛1 ,1≤𝑘≤𝑟

[
𝑄1,1 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘) +𝑄1,2 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘)

]
+ 𝑡𝐾𝑡𝜖,

where:

𝑄2,1 (⌊𝑡/𝜖⌋, 𝑗2) = 𝜖
⌊𝑡/𝜖 ⌋−1∑︁
ℓ=0

|𝑞2 (ℓ, 𝑧(ℓ), 𝑧(ℓ), 𝑗2) |,

𝑄2,2 (⌊𝑡/𝜖⌋, 𝑗2) =
�����𝜖 ⌊𝑡/𝜖 ⌋−1∑︁

ℓ=0
𝑟2 (ℓ, 𝑧(ℓ), 𝑗2)

����� ,
𝑄1,1 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘) = 𝜖

⌊𝑡/𝜖 ⌋−1∑︁
ℓ=0

|𝑞1 (ℓ, 𝑧(ℓ), 𝑧(ℓ), 𝑗1, 𝑘) |,

𝑄1,2 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘) =
�����𝜖 ⌊𝑡/𝜖 ⌋−1∑︁

ℓ=0
𝑟1 (ℓ, 𝑧(ℓ), 𝑗1, 𝑘)

����� .
Bounding the terms: For 𝑄2,1, using Assumption ?? and the low-rank structure:

|𝑞2 (ℓ, 𝑧(ℓ), 𝑧(ℓ), 𝑗2) | ≤ 𝐾 |𝑑𝐿 (𝑧(ℓ); W(ℓ)) − 𝑑𝐿 (𝑧(ℓ); 𝑊̃ (ℓ𝜖)) |
+ 𝐾 |𝑑𝐿 (𝑧(ℓ); 𝑊̃ (ℓ𝜖)) | |H2 (ℓ, 𝑗2; 𝑥(ℓ),W(ℓ)) − 𝐻̃2 (ℓ𝜖, 𝑗2; 𝑥(ℓ), 𝑊̃ (ℓ𝜖)) |

≤ 𝐾𝑡𝒟ℓ 𝜖 (𝑊̃,W) + 𝐾𝑡
𝑟∑︁
𝑘=1

|𝐿𝐶2 ( 𝑗2 ) ,𝑘 | max
𝑗1≤𝑛1

|w1 (ℓ, 𝑗1, 𝑘) − 𝑤̃1 (ℓ𝜖, 𝑗1, 𝑘) |

≤ 𝐾𝑡 (1 + 𝑟𝐾)𝒟ℓ 𝜖 (𝑊̃,W),
which yields:

max
𝑗2≤𝑛2

𝑄2,1 (⌊𝑡/𝜖⌋, 𝑗2) ≤ 𝐾𝑡 (1 + 𝑟𝐾)𝜖
⌊𝑡/𝜖 ⌋−1∑︁
ℓ=0

𝒟ℓ 𝜖 (𝑊̃,W).

For 𝑄1,1, similarly:

|𝑞1 (ℓ, 𝑧(ℓ), 𝑧(ℓ), 𝑗1, 𝑘) | ≤ 𝐾 |𝑑𝐿 (𝑧(ℓ); W(ℓ)) − 𝑑𝐿 (𝑧(ℓ); 𝑊̃ (ℓ𝜖)) | |B𝑘 (ℓ; 𝑥(ℓ),W(ℓ)) |
+ 𝐾 |𝑑𝐿 (𝑧(ℓ); 𝑊̃ (ℓ𝜖)) | |B𝑘 (ℓ; 𝑥(ℓ),W(ℓ)) − 𝐵̃𝑘 (ℓ𝜖 ; 𝑥(ℓ), 𝑊̃ (ℓ𝜖)) |

≤ 𝐾𝑡 (1 + 𝑟𝐾)𝒟ℓ 𝜖 (𝑊̃,W),
which yields:

max
𝑗1≤𝑛1 ,1≤𝑘≤𝑟

𝑄1,1 (⌊𝑡/𝜖⌋, 𝑗1, 𝑘) ≤ 𝐾𝑡 (1 + 𝑟𝐾)𝜖
⌊𝑡/𝜖 ⌋−1∑︁
ℓ=0

𝒟ℓ 𝜖 (𝑊̃,W).

28



For 𝑄2,2 and 𝑄1,2, we use martingale concentration. The martingale differences are bounded: |𝑟2 (ℓ, 𝑧(ℓ), 𝑗2) | ≤ 𝐾𝑡
and |𝑟1 (ℓ, 𝑧(ℓ), 𝑗1, 𝑘) | ≤ 𝐾𝑡 (1 + 𝑟𝐾) almost surely by Assumption ?? and the low-rank structure. Then by martingale
concentration inequalities:

P
(

max
𝑗2≤𝑛2

max
ℓ∈{0,1,...,𝑇/𝜖 }

𝑄2,2 (ℓ, 𝑗2) ≥ 𝜉
)
≤ 2𝑛2 exp

(
− 𝜉2

𝐾𝑇 (𝑇 + 1)𝜖

)
;

P
(

max
𝑗1≤𝑛1 ,1≤𝑘≤𝑟

max
ℓ∈{0,1,...,𝑇/𝜖 }

𝑄1,2 (ℓ, 𝑗1, 𝑘) ≥ 𝜉
)
≤ 2𝑛1𝑟 exp

(
− 𝜉2

𝐾𝑇 (1 + 𝑟𝐾)2 (𝑇 + 1)𝜖

)
.

Putting everything together: All the above results give us:

𝒟⌊𝑡/𝜖 ⌋ 𝜖 (𝑊̃,W) ≤ 𝐾𝑇 (1 + 𝑟𝐾)𝜖
⌊𝑡/𝜖 ⌋−1∑︁
ℓ=0

𝒟ℓ 𝜖 (𝑊̃,W) + 𝜉 + 𝑇𝐾𝑇𝜖, ∀𝑡 ≤ 𝑇,

which holds with probability at least:

1 − 2𝑛1𝑟 exp
(
− 𝜉2

𝐾𝑇 (1 + 𝑟𝐾)2 (𝑇 + 1)𝜖

)
− 2𝑛2 exp

(
− 𝜉2

𝐾𝑇 (𝑇 + 1)𝜖

)
.

The above event implies, by Gronwall’s lemma:

𝒟𝑇 (𝑊̃,W) ≤ (𝜉 + 𝜖)𝑒𝐾𝑇 (1+𝑟𝐾 ) .

Choosing 𝜉 = 𝐾𝑇 (1 + 𝑟𝐾)
√︁
(𝑇 + 1)𝜖 log(2𝑛1𝑛2𝑟/𝛿) completes the proof. □

G.6 Discussion: Width Requirement and Exponential Factor

The bound in Theorem ?? shows that the approximation error scales as:

𝒟𝑇 (𝑊,W) ≤ 𝑒𝐾𝑇 (1+𝑟𝐾 )
(

1
√
𝑛min

+
√
𝜖

)
log1/2

(
3(𝑇 + 1)𝑛2

max
𝛿

+ 𝑒
)
.

For typical values 𝑇 ≤ 10, 𝐾 ≈ 1, 𝑟 ≤ 100, and 𝜖 ≈ 0.001, we have 𝐾𝑇 (1+𝑟𝐾) ≤ 1000 (roughly), so 𝑒𝐾𝑇 (1+𝑟𝐾 ) ≤ 𝑒1000,
which is an extremely large exponential factor. This reflects the worst-case scenario where all 𝑟 channels must
be learned simultaneously. However, in practice, channel specialization enables a more favorable learning regime:
channels progressively capture different frequency components, avoiding the worst-case exponential scaling. The actual
convergence rate is determined by the favorable loss landscape structure (see Section ??) rather than this worst-case
bound.
The key qualitative insight is that the error decreases as 𝑛min increases, with rate 𝑂 (1/√𝑛min) independent of data
dimension 𝑑. The exponential factor 𝑒𝐾𝑇 (1+𝑟𝐾 ) reflects the multi-channel structure but does not dominate in practice
due to channel specialization.
Empirical validation in [?] confirms that networks with width ≈ 1000 trained on high-dimensional real-world data (e.g.,
𝑑 ≈ 1000) exhibit mean-field behaviors, supporting our theoretical prediction that the required width is independent of
𝑑.

H Channel-wise partial functions

This section rewrites the 𝑟 channel summaries𝑚𝑘 (𝑡; ·) as integrals against a measure 𝜇0 on the untrained first-layer features,
together with a pushforward that incorporates the trained first-layer weights 𝑤1. Let 𝑤0 : Ω1 →𝑑 denote the untrained
first-layer map (in the main text, 𝑤0 = 𝐿0) and let 𝜌1 be the law of 𝐶1. Define the pushforward 𝜇0 ≡ (𝑤0)#𝜌1 on 𝑑 . For
each 𝑡 ≥ 0 and 𝑘 ∈ {1, . . . , 𝑟}, the signed measure 𝜇𝑡1,𝑘 ≡ (𝑤0)# (𝑤1 (𝑡, ·, 𝑘) 𝜌1) satisfies 𝜇𝑡1,𝑘 (𝑑𝜃) = 𝑤̄1,𝑘 (𝑡, 𝜃) 𝜇0 (𝑑𝜃)
with 𝑤̄1,𝑘 (𝑡, 𝜃) the conditional average of 𝑤1 (𝑡, ·, 𝑘) given 𝑤0 (𝑐1) = 𝜃. Then 𝑚𝑘 (𝑡; 𝑋,𝑊) =

∫
𝑑 𝜑1 (𝜃𝑋) 𝜇𝑡1,𝑘 (𝑑𝜃) =∫

𝑑 𝑤̄1,𝑘 (𝑡, 𝜃) 𝜑1 (𝜃𝑋) 𝜇0 (𝑑𝜃).
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H.1 Time variation of the 𝑟 partial functions and the induced PDE

Define 𝑓𝑘 (𝑡, 𝑥) ≡ 𝑚𝑘 (𝑡; 𝑥,𝑊) =
∫
𝑑 𝑤̄1,𝑘 (𝑡, 𝜃) 𝜑1 (𝜃𝑥) 𝜇0 (𝑑𝜃). From the MF ODE (??), with 𝐵𝑘 (𝑡; 𝑋) ≡𝐶2

[𝐿𝐶2 ,𝑘 𝜑
′
2 (𝐻2 (𝑡, 𝐶2; 𝑋,𝑊 (𝑡))) 𝑤2 (𝑡, 𝐶2)], the coefficient field evolves as

𝜕𝑡 𝑤̄1,𝑘 (𝑡, 𝜃) = −𝜉1 (𝑡) 𝑍=(𝑋,𝑌 )
[
𝑑𝐿

(
𝑍;𝑊 (𝑡)

)
𝜑1 (𝜃𝑋) 𝐵𝑘 (𝑡; 𝑋)

]
. (9)

Differentiating under the integral and defining 𝐾𝜇0 (𝑥, 𝑥′) ≡
∫
𝑑 𝜑1 (𝜃𝑥) 𝜑1 (𝜃𝑥′) 𝜇0 (𝑑𝜃) yields

𝜕𝑡 𝑓𝑘 (𝑡, 𝑥) = −𝜉1 (𝑡) 𝑍=(𝑋,𝑌 )
[
𝑑𝐿

(
𝑍;𝑊 (𝑡)

)
𝐵𝑘 (𝑡; 𝑋) 𝐾𝜇0 (𝑥, 𝑋)

]
, 𝑘 = 1, . . . , 𝑟 . (10)

For ReLU 𝜑2 (𝑢) = 𝑢+, 𝐵𝑘 (𝑡; 𝑋) =𝐶2 [𝐿𝐶2 ,𝑘 𝑤2 (𝑡, 𝐶2) {𝐻2 (𝑡, 𝐶2; 𝑋,𝑊 (𝑡)) > 0}]. In a one-spike reduction at 𝑥★ with
𝑓𝑘 (𝑡) = 𝑓𝑘 (𝑡, 𝑥★), 𝑑 (𝑡) = 𝑑𝐿 ((𝑥★, 𝑦★);𝑊 (𝑡)), the dynamics are

𝜕𝑡 𝑓𝑘 (𝑡) = −𝜉1 (𝑡) 𝑑 (𝑡) 𝐵𝑘 (𝑡), (11)
𝜕𝑡𝑤2 (𝑡, 𝑐2) = −𝜉2 (𝑡) 𝑑 (𝑡)

(
𝐿𝑐2 𝑓 (𝑡)

)
+, (12)

with
𝐵𝑘 (𝑡) =𝐶2

[
𝐿𝐶2 ,𝑘 𝑤2 (𝑡, 𝐶2)

{
𝐿𝐶2 𝑓 (𝑡) > 0

}]
, 𝑘 = 1, . . . , 𝑟 . (13)

Under Assumption ?? (symmetric independent coordinates of 𝐿𝐶2), nonnegative 𝑤2 (0, ·) and 𝑑 (𝑡) ≤ 0, a one-sparse
initial 𝑓 (0) = 𝑎0𝑒 𝑗 stays one-sparse: 𝑓 (𝑡) = 𝑎(𝑡)𝑒 𝑗 with 𝑎(𝑡) ≥ 𝑎0, 𝐵𝑘 (𝑡) = 0 for 𝑘 ≠ 𝑗 , and 𝐵 𝑗 (𝑡) > 0 (Lemma ??).
Half-space symmetry gives [𝑈 {𝑎𝑈 > 0}] = sign(𝑎) 1

2 [|𝑈 |] (Lemma ??).

Assumption H.1 (Random mixing vector, symmetric and independent). The random vector 𝐿𝐶2 = (𝐿𝐶2 ,1, . . . , 𝐿𝐶2 ,𝑟 )
has independent coordinates, each symmetric about 0: 𝐿𝐶2 ,𝑘

𝑑
= −𝐿𝐶2 ,𝑘 and [𝐿2

𝐶2 ,𝑘
] < ∞ for all 𝑘 .

Lemma H.1 (Half-space symmetry identities). Let𝑈 be a real random variable with𝑈 𝑑
= −𝑈 and [|𝑈 |] < ∞. Then

for any 𝑎 ∈ \{0}, [𝑈 {𝑎𝑈 > 0}] = sign(𝑎) 1
2 [|𝑈 |]. If [𝑈2] < ∞, then [𝑈2 {𝑎𝑈 > 0}] = 1

2 [𝑈
2].

Lemma H.2 (One-sparse invariant manifold and emergent sign-coherence). Assume the one-spike system above,
Assumption ??, 𝑑 (𝑡) ≤ 0 on [0, 𝑇],𝑤2 (0, 𝑐2) ≡ 𝑤0

2 ≥ 0, and 𝑓 (0) = 𝑎0𝑒 𝑗 with 𝑎0 > 0. Then for all 𝑡 ∈ [0, 𝑇]: 𝑓 (𝑡) =

𝑎(𝑡)𝑒 𝑗 with 𝑎(𝑡) ≥ 𝑎0; 𝐵𝑘 (𝑡) = 0 for 𝑘 ≠ 𝑗; 𝐵 𝑗 (𝑡) > 0 with 𝐵 𝑗 (𝑡) =
𝑤0

2
2 [|𝐿𝐶2 , 𝑗 |] +

[𝐿2
𝐶2 , 𝑗

]
2

∫ 𝑡
0 𝜉2 (𝑠) (−𝑑 (𝑠)) 𝑎(𝑠) 𝑑𝑠;

and 𝜕𝑡𝑎(𝑡) ≥ 0.

H.2 Finite-support reduction and scalar ODEs

The kernel 𝐾𝜇0 and the evolution (??) are derived in the preceding section. For the two-point support {𝑥0, 𝑥1},
𝐾𝜇0 (𝑥0, 𝑥1) is positive and fastly decaying in 𝛿: 0 < 𝐾𝜇0 (𝑥0, 𝑥1) ≤ 𝜓(𝛿) with 𝜓(𝛿) → 0 rapidly as 𝛿 → ∞, which holds
for such NNGP kernels in 1D or under suitable geometry. The positivity reinforces the leading local term; the fast decay
keeps the non-local remainder small.

Finite-support data. Assume the input marginal is supported on 𝑥 (1) , . . . , 𝑥 (𝑚) with (𝑋 = 𝑥 (𝑝) ) = 𝜋𝑝 and targets
𝑦 (𝑝) . Set 𝑑𝑝 (𝑡) = 𝑑𝐿 ((𝑥 (𝑝) , 𝑦 (𝑝) );𝑊 (𝑡)) and 𝐵𝑘, 𝑝 (𝑡) = 𝐵𝑘 (𝑡; 𝑥 (𝑝) ). Then (??) becomes

𝜕𝑡 𝑤̄1,𝑘 (𝑡, 𝜃) = −𝜉1 (𝑡)
𝑚∑︁
𝑝=1

𝜋𝑝 𝑑𝑝 (𝑡) 𝐵𝑘, 𝑝 (𝑡) 𝜑1 (𝜃𝑥 (𝑝) ), 𝑘 = 1, . . . , 𝑟 . (14)

Integrating in time yields 𝑤̄1,𝑘 (𝑡, 𝜃) = 𝑤̄1,𝑘 (0, 𝜃) −
∑𝑚
𝑝=1 𝜑1 (𝜃𝑥 (𝑝) ) Γ𝑘, 𝑝 (𝑡) with

Γ𝑘, 𝑝 (𝑡) ≡
∫ 𝑡

0
𝜉1 (𝑠) 𝜋𝑝 𝑑𝑝 (𝑠) 𝐵𝑘, 𝑝 (𝑠) 𝑑𝑠. (15)

Plugging into 𝑓𝑘 gives the explicit superposition

𝑓𝑘 (𝑡, 𝑥) = 𝑓𝑘 (0, 𝑥) −
𝑚∑︁
𝑝=1

Γ𝑘, 𝑝 (𝑡) 𝐾𝜇0 (𝑥, 𝑥 (𝑝) ), 𝑘 = 1, . . . , 𝑟 . (16)

The spike shape is determined by 𝐾𝜇0 ; all learning dynamics reduce to the scalar coefficients Γ𝑘, 𝑝 (𝑡).
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One-spike reduction. If 𝑚 = 1 with 𝑥 (1) = 𝑥★, then 𝑓𝑘 (𝑡, 𝑥) = 𝑓𝑘 (0, 𝑥) − Γ𝑘,1 (𝑡) 𝐾𝜇0 (𝑥, 𝑥★). For 𝑓𝑘 (0, ·) ≡ 0, 𝑓𝑘 (𝑡, ·)
is exactly a kernel bump at 𝑥★ and spike learning reduces to solving Γ𝑘,1 (𝑡).

Two-sided step (𝑚 = 2). Take 𝑥 (1) = 𝑥0 = −𝛿, 𝑥 (2) = 𝑥1 = +𝛿 (𝛿 > 0), 𝑦 (1) = +𝐴, 𝑦 (2) = −𝐴. Then

𝑓𝑘 (𝑡, 𝑥) = 𝑓𝑘 (0, 𝑥) − Γ𝑘,1 (𝑡) 𝐾𝜇0 (𝑥, 𝑥0) − Γ𝑘,2 (𝑡) 𝐾𝜇0 (𝑥, 𝑥1).
The kernel 𝐾𝜇0 (NNGP, [?]) satisfies 𝐾𝜇0 (𝑥𝑝 , 𝑥𝑝) = 𝐾0 > 0 for 𝑝 ∈ {0, 1}, and the off-diagonal 𝐾𝜇0 (𝑥0, 𝑥1) =

𝐾𝜇0 (−𝛿, +𝛿) is positive and fastly decaying in 𝛿: 0 < 𝐾𝜇0 (𝑥0, 𝑥1) ≤ 𝜓(𝛿) with 𝜓(𝛿) → 0 rapidly as 𝛿 → ∞. The full
evolution is

𝜕𝑡 𝑓𝑘 (𝑡, 𝑥𝑝) = −𝜉1 (𝑡) 𝐾𝜇0 (𝑥𝑝 , 𝑥𝑝) 𝑑𝑝 (𝑡) 𝐵𝑘, 𝑝+1 (𝑡) + 𝐸𝑝 (𝑡),
with |𝐸𝑝 (𝑡) | ≤ 𝐶′ 𝜓(𝛿) for 𝜓(𝛿) fastly decaying in 𝛿. The positivity of 𝐾𝜇0 (𝑥0, 𝑥1) gives even better positivity in the
log-ratio; the fast decay keeps the remainder small. This is the setting of Theorem ??.

H.3 Proof of Theorem ?? (two-sided step, 𝑥0)

We prove the theorem at 𝑥0; the argument at 𝑥1 is symmetrical.

At 𝑥0. By the log-ratio derivative identity at 𝑥0,

𝜕𝑡𝑅12 (𝑡, 𝑥0) =
sign( 𝑓1) 𝜕𝑡 𝑓1

| 𝑓1 |
− sign( 𝑓2) 𝜕𝑡 𝑓2

| 𝑓2 |
.

Insert the full evolution (??): 𝜕𝑡 𝑓𝑘 (𝑡, 𝑥0) = −𝜉1 𝐾𝜇0 (𝑥0, 𝑥0) 𝑑0 𝐵𝑘,1 + 𝐸0 (𝑡) with |𝐸0 (𝑡) | ≤ 𝐶′ 𝜓(𝛿) for 𝜓(𝛿) fastly
decaying in 𝛿. Then

𝜕𝑡𝑅12 (𝑡, 𝑥0) = 𝜉1 (𝑡) 𝐾𝜇0 (𝑥0, 𝑥0) (−𝑑0 (𝑡))
( sign( 𝑓1)𝐵1,1

| 𝑓1 |
−

sign( 𝑓2)𝐵2,1

| 𝑓2 |

)
+ 𝜀0 (𝑡), |𝜀0 (𝑡) | ≤ 𝐶′′ 𝜓(𝛿),

where 𝜀0 (𝑡) = 𝐸0 (𝑡)
( sign( 𝑓1 )

| 𝑓1 | − sign( 𝑓2 )
| 𝑓2 |

)
inherits the bound from 𝐸0. Use −𝑑0 ≥ 0. The sign condition gives

sign( 𝑓1)𝐵1,1 = |𝐵1,1 |; −sign( 𝑓2)𝐵2,1 ≥ −|𝐵2,1 |. The dominance inequality at 𝑥0 is |𝐵2,1 | ≤ 𝜌0
| 𝑓2 |
| 𝑓1 | |𝐵1,1 |, hence

|𝐵1,1 |
| 𝑓1 |

−
sign( 𝑓2)𝐵2,1

| 𝑓2 |
≥

|𝐵1,1 |
| 𝑓1 |

−
|𝐵2,1 |
| 𝑓2 |

≥ (1 − 𝜌0)
|𝐵1,1 |
| 𝑓1 |

,

so 𝜕𝑡𝑅12 (𝑡, 𝑥0) = (1 − 𝜌0) 𝜉1 𝐾𝜇0 (𝑥0, 𝑥0) (−𝑑0) |𝐵1,1 |
| 𝑓1 | + 𝜀0 (𝑡). The leading term is ≥ 0; since 𝐾𝜇0 (𝑥0, 𝑥1) > 0 and

fastly decaying, the off-diagonal coupling reinforces the leading term (even better positivity) while |𝜀0 | ≤ 𝐶′′ 𝜓(𝛿) is
negligible for 𝛿 large. Thus 𝜕𝑡𝑅12 (𝑡, 𝑥0) ≥ 0 whenever the leading term dominates |𝜀0 |.

At 𝑥1. The same argument applies by symmetry (indices 1↔2, 𝑥0 ↔ 𝑥1): channel 2 dominates at 𝑥1 and 𝜕𝑡𝑅21 (𝑡, 𝑥1) ≥
0.

Conclusion. The log-ratio 𝑅12 at 𝑥0 is non-decreasing on 𝐼; strict dominance of channel 1 at 𝑥0 cannot be lost and is
amplified whenever |𝐵1,1 | is not too small. By symmetry, channel 2 dominates at 𝑥1.

H.4 On the hypothesis: when (i)–(iii) hold in practice

The hypothesis of Theorem ?? is conditional: (i) −𝑑0 (𝑡) ≥ 0, (ii) 𝐵1,1 (𝑡) has the same sign as 𝑓1 (𝑡, 𝑥0), and
(iii) |𝐵2,1 (𝑡) | ≤ 𝜌0

| 𝑓2 (𝑡 ,𝑥0 ) |
| 𝑓1 (𝑡 ,𝑥0 ) | |𝐵1,1 (𝑡) | for some 𝜌0 ∈ [0, 1). In practice, these conditions are observed to hold in standard

training setups. Under Xavier initialization (or similar scale-corrected schemes) for the frozen feature and mixing
matrices, and sub-Gaussian initialization for the trainable weights 𝑤1, 𝑤2, the initial 𝑓𝑘 and backprop signals 𝐵𝑘, 𝑝 are
well-balanced across channels. The gradient-flow dynamics then tend to amplify small asymmetries: once one channel
leads at 𝑥0, (ii) and (iii) are maintained because the dominant channel receives a larger 𝐵𝑘 and thus a larger 𝜕𝑡 𝑓𝑘 , while
the weaker channel’s backprop stays proportionally smaller. Condition (i) holds when the network under-predicts at
𝑥0; for squared loss 𝑑𝐿 ∝ 𝑦̂ − 𝑦, −𝑑0 ≥ 0 corresponds to 𝑦̂(𝑥0) ≤ 𝑦(𝑥0) = +𝐴, which is typical before convergence.
The same reasoning applies for non-convex losses such as cross-entropy: the loss derivative has a different form, but
under-prediction at a class boundary and emergent sign-coherence under gradient flow still yield (i)–(iii) on an interval 𝐼
in common regimes. Thus, although the theorem does not prove (i)–(iii) from first principles, they are consistent with
and typically observed under Xavier and sub-Gaussian initialization and under losses including cross-entropy, which are
standard in practice.
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I Additional Experimental Details

I.1 Dataset

Target: 𝑓 (𝑥) = cos( 𝑓1𝜋𝑥2) − 0.8 cos( 𝑓2𝜋𝑥2) on [−1, 1], symmetric in 𝑥. We use ( 𝑓1, 𝑓2) ∈
{(36, 12), (72, 24), (144, 48)} with training sizes 1000, 2000, 4000 and test sizes 1234, 2468, 4936. Train: uni-
form grid; test: different distribution. Sample count scales with frequency to match Nyquist density.

I.2 Hyperparameters

Table 4: Hyperparameters. Main runs: batch 100; we also try 50 and 200.

Hyperparameter Values
Architecture

Depth 𝐿 8 layers
Width 𝑛 1024 neurons per layer
Activation Leaky ReLU
Rank 𝑟 {10, 15, 20, 25, 50, 100, 1024}
fixWb True (frozen), False (trainable)

Optimization
Optimizer Adam
Learning rate 0.001 (initial)
Scheduler StepLR (𝛾 = 0.9, step_size=100)
Gradient clipping max_norm=1.0
Batch size {50, 100, 200}
Training epochs 10,000 (all runs)

Data
Frequency pairs ( 𝑓1, 𝑓2) (36, 12), (72, 24), (144, 48)
Training samples 1000, 2000, 4000 (by frequency)
Test samples 1234, 2468, 4936 (by frequency)
Input domain 𝑥 ∈ [−1, 1]

Training Details
Random seed 42
Device CUDA (GPU)
Checkpointing Every 500 epochs
Evaluation frequency Every 50 epochs

Roughly 90 configurations (rank, fixWb, frequency, batch size); 10k epochs, no early stopping.

I.3 Plots and log-ratio setup

We plot loss and error evolution, final predictions vs. target, and layer-wise channel partials (up to 36 per layer) to
inspect hierarchical frequency learning (Section ??). Log-ratio (Figure ??): 3-layer, 𝑛=1024, 𝑟=15, cos(8𝜋𝑥); SGD lr
0.01, batch 160, 10k epochs; heatmap of 𝑅𝑖, 𝑗 at 𝑥=0.
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